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Abstract 

Robustness of parameter estimation relies on 
discriminating inliers from outliers within the set of 
correspondences. In this paper, we present a method using 
tensor voting to eliminate outliers and estimating affine 
transformation parameters directly from covariance matrix 
of selected inliers without additional parameter estimation 
processing. Our approach is based on the representation of 
the correspondences in a decoupled joint image space and 
the use of the metric associated with the affine 
transformation. We enforce the metric property in a joint 
image space for tensor voting, detect several inlier groups 
corresponding distinct affine motions and directly estimate 
affine parameters from each set of inliers. The proposed 
approach is illustrated by a set of challenging examples.∗ 

1. Introduction 
Motion estimation using parametric models is widely 

used for video processing such as image mosaics, video 
compression and video surveillances [3][4][6][8]. The affine 
motion model is a commonly used method for these 
applications due to its simplicity and the small inter-frame 
camera motion. In this paper we present a robust and non-
iterative correspondence-based method to estimate affine 
parameters using tensor voting. 

Robustness of parameter estimation depends on 
successfully removing the outliers within correspondences. 
Several techniques were proposed for extracting good 
correspondences that fit the targeted parametric model [7]. 
RANSAC[9] and its enhanced variations are commonly 
used techniques because of the capability of handling a large 
portion of outliers. However, these techniques perform 
iterative steps that are sensitive to the selections of samples 
and thresholds, and they do not constrain the space of 
admissible solutions according to the parametric model 
used. Recently non-iterative tensor voting based-methods 
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for estimating fundamental matrix were proposed in [1][5]. 
The tensor voting formalism was used as a pre-processing 
step for outlier removal in 8D and 4D space by 
characterizing hyper-surfaces. In 8D approach, a plane is 
parameterized by 8 fundamental matrix variables, and the 
outliers are the points not on the plane. In this approach, a 
local smoothness and a global hyper-plane constraint are 
used at the same time. However, the parameters defining the 
8D basis make the space neither orthogonal nor isotropic. 
Therefore, the input must be properly scaled prior to 
processing. In [5], a 4D approach using the joint image 
space is derived from point correspondences to reduce the 
dimensionality and to provide isotropic and orthogonal 
properties. Inliers are detected as points on a 4D cone as 
defined by the epipolar constraint in 4D joint image space. 

In this paper, taking advantages of tensor voting-based 
methods [1][5], we propose an affine motion estimation 
method using tensor voting to detect inliers and outliers and 
recover corresponding parameters. The proposed method 
defines a decoupled joint image space from input 
correspondences, shows that affine transformation constraint 
represents a 2D plane in the defined space and enforces 2D 
plane structure for tensor voting to detect inliers. 
Additionally, our method detects several independent affine 
motions and directly estimates the parameters from each set 
of inliers. 

In section 2, we briefly describe the tensor voting method 
[2]. The following section describes affine transformation 
properties in the joint image space and characterizes a 
decoupled joint image space and the corresponding metric. 
It allows us to define direct parameter estimation through 
the tensor voting process. Finally, a set of experimental 
results illustrates our methodology performed on video data 
sets and compares these results to the RANSAC algorithm. 

2. Tensor Voting  
Tensor voting formalism provides a robust approach for 

extracting salient structures by encoding data and the 
corresponding uncertainties in a second order symmetric 
tensor. An efficient voting process allowing for the 



propagation of local properties complements this data 
representation. The extraction of salient structures is 
inferred from the canonical description of an arbitrary tensor 
by its eigensystem representing the local geometric 
properties of the data. Indeed, any arbitrary symmetric 
tensor can be decomposed by: 
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where λi denote the eigenvalues (sorted in a decreasing 
order) and ei denotes corresponding eigenvectors. In any 
dimension higher than 3D, the first term of S characterizes 
the hyper-plane orientation (normal) and the associated (λ1 -
λ2) saliency. These local geometric properties are 
propagated within a domain of influence depending the 
principal orientation (given by e1) and on the associated 
saliency. 

q

3. Affine Model and Tensor Voting 
In this section, we show that a decoupled joint image 

space is a 4D space, and that the embedded structure that 
represents the affine motion is a 2D plane. By inferring the 
most salient 2D plane from input correspondences based on 
tensor voting, we remove the outliers and estimate the 
parameters directly from inliers. This approach formulates 
the problem in a geometric space and minimizes geometric 
distance in a non-iterative manner. It differs from classical 
techniques, in that they attempt to minimize the algebraic 
errors iteratively.  

3.1. Affine Model and Joint Image Space 

A 2D affine model is defined by six parameters. In this 
model, a correspondence between a feature point (x,y) from 
one image and the corresponding point (x’,y’) from the 
second image is given by the following equation:  
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which can be rewritten in the parametric space as: 
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A set of linear equations derived from corresponding 
points are usually solved by a least square method or its 
variations that minimize algebraic errors. In the traditional 
joint image space representation, each point is a 
combination of 2D image vectors and affine transformation 
can be rewritten as: (   0
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But in the affine model, the joint spaces (x,y,x’) and 
(x,y,y’) are independently constrained and therefore can be 
decoupled to reduce the dimension of the joint image space. 

Therefore, by defining  and 
, we have two separate joint spaces 

 and . We obtain the 
following equations in  the decoupled joint image spaces: 
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In this representation, each 4D point defined by 
 lies on a 2D plane parameterized by 

 in the 4D space. Therefore, the points on 
the 2D plane define inliers. In case that input 
correspondences consist of perfect correspondences, the 
eigenvector corresponding to the smallest eigenvalue of the 
covariance matrix of the correspondences in the space 
(x,y,x’,1) or (x,y,y’,1) characterizes the parameters of the 2D 
plane. If several affine motions are present among the 
correspondences, the same number of corresponding 2D 
planes is defined in the 4D space. Consequently, if we 
robustly remove outliers and group inliers belonging to the 
same plane, we can compute the parameters directly from 
the set of inliers. Tensor voting achieves this in this paper. 
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From each correspondence (x,y) and (x’,y’), we define 
two 4D spaces by decoupling the correspondence as 
(x,y,x’,1) and (x,y,y’,1). Each 4D space is orthogonal and 
isotropic, and each 4D point (x,y,x’,1) or (x,y,y’,1) lies on a 
plane parameterized by (a,b,-1,tx) and (c,d,-1,ty) 
respectively. 

3.2. Outlier Removal 
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Figure 1. Recovering affine parameters. 
 
Figure 1 shows the flowchart for recovering affine 

parameters from a set of correspondences. At first, input 
correspondences are converted to points in a decoupled joint 



image space and encoded into a 4D ball tensor defined by 
the following eigenvalues and eigenvectors: 

λ1=λ2=λ3=λ4=1 
e1=(1,0,0,0) e2=(0,1,0,0) e3=(0,0,1,0) e4=(0,0,0,1) 

 
During the first sparse voting, each point collects votes 

from its neighbours and characterizes a principal direction 
defining a 2D plane. The normal orientation of 2D plane is 
defined by eigenvector e1 associated to the largest 
eigenvalue of the decomposed tensor. The saliency of the 
extracted plane is given by (λ1 -λ2) and characterizes the 
support of the neighbours to the plane. Therefore, isolated 
random noise has small saliency due to little support from 
neighbours. During the second voting, voting is performed 
with a planar voting field with a narrow angle and wider 
neighbourhood derived from the obtained normal 
orientation. At this step, only highly salient points (defined 
by the median threshold of the saliency values from the first 
voting) participate in the voting. The planar voting field 
allows to enforce a global plane constraint. After the second 
voting, outlier rejection is performed based on mean value 
computed from salient points. This outlier removal step is 
followed by a clustering of inliers that lie on the same plane. 
The grouping starts with the most salient point and cluster 
points having the same normal direction and similar distance 
of x-x’ or y-y’. If un-clustered inliers remain, the grouping 
step iterates using the next highest saliency. This allows 
clustering multiple planes in the 4D space corresponding to 
different affine motion.  

3.3. Parameter Recovery 

For each set of clustered inliers, we estimate 
corresponding affine motion parameters. Let the selected 
inliers in two joint-image space represented by 
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where Mx is the covariance matrix of the inliers and  px is the 
parameters representation in the corresponding joint-image 
subspaces. 

The parameters of the affine transform are therefore 
characterized by the eigenvector associated to the smallest 
eigenvalue of the covariance matrix. Conceptually this 

method acts like conventional parameter estimation. 
However, we showed that encoding the metric of the joint-
image spaces in the tensor voting formalism allows us to 
perform outliers removal and multiple affine motion 
estimation. In this paper, we only show a case for estimating 
parameters a, b, tx. Parameters c, d, ty can be derived in the 
same way. 

4. Experimental Results 
Affine parameter estimation has been studied by a large 

number of authors and therefore the presentation of a new 
approach has to be presented by processing challenging 
situations and naturally compare it to the state-of-the art. We 
chose to compare our method the results obtained by 
RANSAC. However, in the first example we chose a 
synthetic example that cannot be processed by a RANSAC 
technique: multiple affine motions. We generated a set of 
correspondences from two different motions (black and red 
lines) and added random correspondences (green lines) with 
similar amplitude motion as illustrated in Figure 2. The ratio 
of correct to noisy (ie random) is 0.5. Blue x marked points 
are selected as inliers by the system. Grouping these inliers 
into different motion groups is done as describe in section 
3.2. 

 

Figure 2. Synthetically generated correspondences. 

Table 1 shows the comparison between the real affine 
parameter values and the parameters estimated by the 
proposed method. 

Affine parameters for black lines  
A B C D tx ty 

Real 0.99 -.017 0.017 0.99 20.00 2.00 
Estimated 1.00 -0.01 0.017 1.00 21.00 1.15 

Affine parameters for red lines  
A B C D tx ty 

Real 1.00 0.00 0.00 1.00 10.00 10.00 
Estimated 1.00 0.00 0.00 1.00   9.98 10.10 

Table 1. Comparison estimated parameters to given 
real parameters.  

In Figure 3 and Figure 6, we show a pair of frames 
extracted from two video sequences with moving objects in 
the scene. The purpose here is to compare the proposed 
method and RANSAC algorithm. We start by selecting 
feature points using a Harris corner detector with a low 



threshold allowing to consider strong and weak corners. In  
Figure 4 and Figure 7 we show the correlation based initial 
matching. In Figure 5 and Figure 8 we show the image 
difference after compensating for the motion we have 
estimated using the proposed method. Here again we 
compare the results with the one obtained with the 
RANSAC method. One can clearly see a better image 
compensation resulting from the proposed technique. 
Especially in both Figure 5 in Figure 8, the background is 
more accurately registered.  

5. Conclusion  
In this paper, we proposed to use tensor voting to remove 

outliers within correspondences and robustly estimate affine 
parameters. Our approach contributed to define a 4D 
decoupled joint space from feature correspondences and 
showed that a 2D plane is a structure that affine motion 
constrains in the defined spaces. Also, we showed that the 
proposed method allows the computation of multiple affine 
motions simultaneously. Future work will investigate other 
parametric motions and global registration using a similar 
formalism. 

 

  
Figure 3. Inputs (Walking Scene). 

 

 

Figure 4. Correlation-based initial correspondences. 

   

Figure 5. Image difference after motion compensation 
by RANSAC(left) and our method(right). 

  

Figure 6. Inputs (Basketball Scene). 

 

Figure 7. Correlation-based initial correspondences. 

  

Figure 8. Image pixel differences after motion 
compensation by RANSAC(left) and our method(right). 
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