Processing Geometry: Graphics as a Mathematical Discipline

Mathieu Desbrun Graphics Immersion Lab USC

Computer Graphics (II)

Various targets:

- > CAD, design of surfaces commerce, art ...
- > AV productions:
- entertainment, education ...

surgery, virtual reality ...

Recent Developments

After the early years...

- > Rasterization, z-buffer, basic shading, etc.
- » Basic libraries: OpenGL, DirectX, Java 3D

We need more accuracy

- > Photorealistic radiosity: simulation of light interaction
- > Scientific and medical visualization: 3D viz of rich data
- > Digital geometry: handling 3D geometry with ease
- > Realtime animation: realistic simulation with haptics
- Etc (geophysics, spatial exploration, biology,...)

History of Multimedia

Success of Digital Signal Processing (DSP)

- > Sounds, images, videos are all signals...

Sound, Images, Video

Signals as functions

- regular sampling
- > basis for quantization, transform, filtering, ...

3D Surface (II)

Alas, DSP foundations and methods do not apply

- > Irregular sampling (bye-bye, Fourier analysis)
- > Curved geometry (differential geometry, non-linear)
- > Topology (new parameter)

5

Almost all the usual DSP tools need to be re-invented!

Introducing Digital Geometry Applications

- ▷ e-catalogs
- > mass customization
- > electronic games
- > medicine & biology
- » art history & archeology
- reverse engineering

Geometry Processing (DGP)

Lots of things to do...

- > creation, acquisition
- » storage, transmission
- > authentication
- > editing, animation
- ▹ simulation
- > manufacture

<section-header><section-header><section-header>Example: DGP Compression (III)Genetry encoding• nethods for "large" geometry.• nethods for "large" geometry.• norgessivity critical• norgessivity critical</t

Example: Smoothing Arbitrary Meshes

Context:

- > Meshes often come from 3D scans
- > Noisy
- Non uniform triangles
- > No parameterization, just positions in space

Smoothing : removal of rough detail features while preserving the global shape

Results on 3D Scanned Data

How to Denoise Shape?

Curvature flow on the geometry $\dot{\mathbf{X}} = -\kappa \mathbf{n}$ (Laplace-Beltrami)

Problem: how can we find *k* n reliably?

- > Needs to be accurate whatever the # of neighbors
- > Perfectly 0 if perfectly flat

5)

Animation: Virtual Simulators

- Virtual laparoscopic surgery
- ✓ Real time dynamic simulation (tough constraint!)
- ✓ Surface mesh deformation (new physical models)
- ✓ Force feedback

Movies

- □ First, a <u>virtual actor</u>
- □ Introducing... <u>a real hat</u>
- □ Same thing, in <u>slow mo</u>
- Discrete hat, same behavior
- □ Again, in <u>slow mo</u>
- □ A <u>close up</u>, and in <u>slow mo</u>
- □ A quite <u>rigid hat</u>, and in <u>slow mo</u>
- □ A <u>floppy one</u>, and in <u>slow mo</u>

Idea Takeaway

Math matters, too!

- > DGP = more than just a bunch of triangles
- > Need for powerful tools
- > Difficulties
 - » new generalizations
 - » curved geometry
 - » non-linear
 - » inter-disciplinary collaborations

Only the Beginning

Digital Geometry Processing:

- emerging discipline
- > process large geometry
 - » acquisition, compression, editing, simulation,...
- > mathematical foundations
 - » Discrete Exterior Calculus
 - » Discrete Differential Geometry
 - » Discrete Mechanics for simulation

If you want to know more

http://www-grail.usc.edu/ http://www.multires.caltech.edu/ http://www.gg.caltech.edu/ http://www.siggraph.org/ http://www.usc.edu/dept/CGIT

