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3 questions

1) Discuss how the main components of 
human vision may cooperate to yield 
scene understanding

2) Discuss why the representation and 
memorization of scenes is a complex 
issue

3) Discuss mechanisms by which task 
and behavioral demands may 
influence early vision









Eye movements
and Character Animation





“Where” and “What” Visual Pathways

Dorsal stream (to posterior parietal): object localization
Ventral stream (to infero-temporal): object identification

Rybak et al, 1998

“where”

“what”

“where”

“what”



72 color outdoors
images

Use attention model
to select most
salient locations

Crop image around each
selected location

Feed cropped sections
to recognition
model



Combined Where/What Model Performance

- 3x speed gain
- Overall recognition rate drops <5% (from about 80%)
- No difference between using top 5, 6, or 7 attended locations



Riesenhuber & Poggio,
Nat Neurosci, 1999

The next step…

Develop scene understanding/navigation/orienting mechanisms
that can exploit the (very noisy) “rich scanpaths” (i.e., with 
location and sometimes identification) generated by the model.



Extract “minimal subscene” (i.e., small number of objects and
actions) that is relevant to present behavior.

Achieve representation for it that is robust and stable against
noise, world motion, and egomotion.



How plausible is that?

3—5 eye movements/sec, that’s 150,000—250,000/day

Only central 2deg of retinas (our foveas) carry high-
resolution information

Attention helps us bring our foveas onto relevant objects.





Extended Scene Perception

• Attention-based analysis: Scan scene with 
attention, accumulate evidence from detailed local 
analysis at each attended location.

• Main issues:
- what is the internal representation?
- how detailed is memory?
- do we really have a detailed internal

representation at all?
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Algorithm
- At each fixation, extract central edge orientation, as well as a 

number of “context” edges;

- Transform those low-level features into more invariant “second 
order” features, represented in a referential attached to the central 
edge;

- Learning: manually select 
fixation points; store sequence 
of second-order features 
found at each fixation into 
“what” memory; also store
vector for next fixation, based
on context points and in the
second-order referential;



Algorithm



Algorithm

- Search mode: look
for an image patch that
matches one of the
patches stored in the
“what” memory;

- Recognition mode:
reproduce scanpath 
stored in memory and 
determine whether we 
have a match.



Robust to variations in
scale, rotation, 
illumination, but not 
3D pose.



Schill et al, JEI, 2001





How much can we 
remember?

•Incompleteness of memory:

•how many windows in the Taj Mahal?

•despite conscious experience of 
picture-perfect, iconic memorization.





But…

•We can recognize complex scenes 
which we have seen before.

•So, we do have some form of iconic 
memory.



Extended Scene Perception

•Attention-based analysis: Scan scene with 
attention, accumulate evidence from detailed local 
analysis at each attended location.

•Main issues:
-what is the internal representation?
-how detailed is memory?
-do we really have a detailed internal representation at all!!?

•Gist: Can very quickly (120ms) classify entire scenes 
or do simple recognition tasks; can only shift 
attention twice in that much time!



Gist of a Scene
•Biederman, 1981:

•from very brief exposure to a scene (120ms or less), 
we can already extract a lot of information about 
its global structure, its category (indoors, outdoors, 
etc) and some of its components.

•“riding the first spike:” 120ms is the time it takes 
the first spike to travel from the retina to IT!

•Thorpe, van Rullen:

•very fast classification (down to 27ms exposure, no 
mask), e.g., for tasks such as “was there an animal in 
the scene?”



















The World as an Outside Memory

Kevin O’Regan, early 90s:

why build a detailed internal representation of the 
world?

• too complex…
• not enough memory…

… and useless?

The world is the memory.  Attention and the eyes 
are a look-up tool.



The “Attention Hypothesis”
No “integrative buffer”

Early processing extracts information up to “proto-object” 
complexity in massively parallel manner

Attention is necessary to bind the different proto-objects 
into complete objects, as well as to bind object and 
location

Once attention leaves an object, the binding “dissolves.”
Not a problem, it can be formed again whenever needed, 
by shifting attention back to the object.

Only a rather sketchy “virtual representation” is kept in 
memory, and attention/eye movements are used to gather 
details as needed

Rensink, 2000













Outlook on human vision

Unlikely that we perceive scenes by building a progressive buffer and 
accumulating detailed evidence into it.

- too much resources
- too complex to use.

Rather, we may only have an illusion of detailed representation.
- use eyes/attention to get the details as needed
- the world as an outside memory.

In addition to attention-based scene analysis, we are able to very rapidly 
extract the gist & layout of a scene – much faster than we can shift 
attention around.

This gist/layout must be constructed by fairly simple processes that 
operate in parallel.  It can then be used to prime memory and 
attention.



Eye Movements
1) Free examination

2) estimate material 
circumstances of family

3) give ages of the people

4) surmise what family has
been doing before arrival
of “unexpected visitor”

5) remember clothes worn by
the people

6) remember position of people
and objects

7) estimate how long the 
“unexpected visitor” has been 
away from family

Yarbus, 1967



Goal-directed scene understanding

• Goal: develop vision/language-enabled AI system.
Architecture it after the primate brain

• Test: ask a question to system about a video clip that it 
is watching

e.g., “Who is doing what to whom?”

• Test: implement system on mobile robot and give it some 
instructions

e.g., “Go to the library”



Example
• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”



General
architecture



Example of operation
• Question: “What is John catching?”
• Video clip: John catching a ball

1) Initially: empty task map and task list

2) Question mapped onto a sentence frame
allows agent to fill some entries in the task list:

- concepts specifically mentioned in the question
- related concepts inferred from KB (ontology)

e.g., task list contains:
“John [AS INSTANCE OF] human(face, arm, hand,

leg, foot, torso)” (all derived from “John”) 
“catching, grasping, holding” (derived from “catching”)
“object(small, holdable)” (derived from “what”).



More formally: how do we do it?
- Use ontology to describe categories, objects and relationships:

Either with unary predicates, e.g., Human(John),
Or with reified categories, e.g., John ∈ Humans,
And with rules that express relationships or properties,

e.g., ∀ x Human(x) � SinglePiece(x) ∧ Mobile(x) ∧ Deformable(x)

- Use ontology to expand concepts to related concepts:
E.g., parsing question yields “LookFor(catching)”

Assume a category HandActions and a taxonomy defined by
catching ∈ HandActions, grasping ∈ HandActions, etc.

We can expand “LookFor(catching)” to looking for other actions in the 
category where catching belongs through a simple expansion rule:
∀ a,b,c a ∈ c ∧ b ∈ c ∧ LookFor(a) � LookFor(b)



More formally: how do we do it?
- Use composite objects to describe structure and parts:

∀ h Human(h) � ∃ f, la, ra, lh, rh, ll, rl, lf, rf, t
Face(f) ∧ Arm(la) ∧ Arm(ra) ∧ Hand(lh) ∧ Hand(rh) ∧

Leg(ll) ∧ Leg(rl) ∧ Foot(lf) ∧ Foot(rf) ∧ Torso(t) ∧
PartOf(f, h) ∧ PartOf(la, h) ∧ PartOf(ra, h) ∧ PartOf(lh, h) ∧

PartOf(rh, h) ∧ PartOf(ll, h) ∧ PartOf(rl, h) ∧ PartOf(lf, h) ∧
PartOf(rf, h) ∧ PartOf(t, h) ∧

Attached(f, t) ∧ Attached(la, b) ∧ Attached(ra, b) ∧ Attached(ll, b) ∧
Attached(rl, t) ∧ Attached(lh, la) ∧ Attached(rh, ra) ∧
Attached(lf, ll) ∧ Attached(rf, rl) ∧ Attached(rh, ra) ∧

la ≠ ra ∧ lh ≠ rh ∧ ll ≠ rl ∧ lf ≠ rf ∧
∀ x Leg(x) ∧ PartOf(x, a) � (x = ll ∨ x = rl) ∧ [etc…]





3) Task list creates top-down biasing signals onto vision, by associating  
concepts in task list to low-level image features in “what memory”

e.g., “human” => look for strong vertically-oriented features
“catching” => look for some type of motion

In more complex scenarios, not only low-level visual features, but also 
feature interactions, spatial location, and spatial scale and 
resolution may thus be biased top-down.



More formally: how do we do it?
- Use measures to quantify low-level visual features and weights:
e.g., describing the color of a face:
∀ f Face(f) �

Red(f) = Fweight(0.8) ∧ Green(f) = Fweight(0.5) ∧ Blue(f) = Fweight(0.5)
[or use predicates similar to those for intervals to express ranges of feature weights]

e.g., recognizing a face by measuring how well it matches a template:
∀ f RMSdistance(f, FaceTemplate) < Score(0.1) � Face(f)

e.g., biasing the visual system to look for face color:
∀ f Face(f) ∧ LookFor(f) � RedWeight = Red(f) ∧ GreenWeight = Green(f) ∧

BlueWeight = Blue(f)
[may eliminate Face(f) if Red(), Green() and Blue() defined for all objects we 

might look for]



Example of operation

4) Suppose that the visual system first attends to a bright-red chair 
in the scene.

Going through current task list, agent determines that this object is 
most probably irrelevant (not really “holdable”)

Discard it from further consideration as a
component of the minimal subscene.

Task map and task list remain unaltered.



More formally: how do we do it?
- What is the task list, given our formalism?

it’s a question to the KB:  ASK(KB, ∃ x  LookFor(x))

- Is the currently attended and recognized object, o, of interest?
ASK(KB, LookFor(o))

- How could we express that if the currently attended & recognized object 
is being looked for, we should add it to the minimal subscene?

∀ x  Attended(x) ∧ Recognized(x) ∧ LookFor(x) ∧
x ∉ MinimalSubscene � x ∈ MinimalSubscene

with:
∀ x ∃ t RMSdistance(x, t) < Score(0.1) � Recognized(x)

and similar for Attended() [Note: should be temporally tagged; see next]



Example of operation

5) Suppose next attended and identified object is John’s rapidly
tapping foot. 

This would match the “foot” concept in the task list.

Because of relationship between foot and human (in KB), agent 
can now prime visual system to look for a human that overlap 
with foot found:
- feature bias derived from what memory for human
- spatial bias for location and scale

Task map marks this spatial region as part of the current minimal
subscene. 



Example of operation
6) Assume human is next detected and recognized

System should then look for its face
how? from KB we should be able to infer that resolving

“? [AS INSTANCE OF] human”

can be done by looking at the face of the human. 

Once John has been localized and identified, entry 
“John [AS INSTANCE OF] human(face, arm, hand, leg, foot, torso)”

simplifies into simpler entry 
“John [AT] (x, y, scale)”

Thus, further visual biasing will not attempt to further localize John.



More formally: how do we do it?

- How do we introduce the idea of successive attentional shifts and 
progressive scene understanding to our formalism?
Using situation calculus!

• Effect axioms (describing change):
∀ x,s  Attended(x, s) ∧ Recognized(x, s) ∧ LookFor(x, s) �

¬LookFor(x, Result(AddToMinimalSubscene, s))

• Successor-state axioms (better than the frame axioms for non-change):
∀ x,a,s   x ∈ MinimalSubscene(Result(a, s)) ⇔

(a = AddToMinimalSubscene) ∨
(x ∈ MinimalSubscene(s) ∧ a ≠ DeleteFromMinimalSubscene)



7) Suppose system then attends to the bright 
green emergency exit sign in the room

This object would be immediately discarded 
because it is too far from the currently 
activated regions in the task map.

Thus, once non-empty, the task map acts as 
a filter that makes it more difficult (but 
not impossible) for new information to 
reach higher levels of processing, that is, 
in our model, matching what has been 
identified to entries in the task list and 
deciding what to do next.



8) Assume that now the system attends to John’s arm motion

This action will pass through the task map (that contains John)

It will be related to the identified John (as the task map will not 
only specify spatial weighting but also local identity)

Using the knowledge base, what memory, and current task list the
system would prime the expected location of John’s hand as 
well as some generic object features.



9) If the system attends to the flying ball, it would be incorporated 
into the minimal subscene in a manner similar to that by which 
John was (i.e., update task list and task map).

10) Finally: activity recognition. 

The various trajectories of the various objects that have been 
recognized as being relevant, as well as the elementary actions 
and motions of those objects, will feed into the activity 
recognition sub-system

=> will progressively build the higher-level, symbolic 
understanding of the minimal subscene. 

e.g., will put together the trajectories of John’s body, hand, and of 
the ball into recognizing the complex multi-threaded event 
“human catching flying object.”



11) Once this level of understanding is reached, the 
data needed for the system’s answer will be in the 
form of the task map, task list, and these recognized 
complex events, and these data will be used to fill in 
an appropriate sentence frame and apply the answer.



Example

• Question: “who is doing what to whom?”

• Answer: “Eric passes, turns around and passes again”



Agent     (relay information)

Task specification
“look for legs”

Long Term 
Memory

(Ontology)

Working Memory
•Creates, maintains task graph
•Computes relevance of fixation
•Predicts location of other 
relevant entities

Low level features

Gist:
Outdoor

Sports scene

Layout:
1. Sky

2. Trees
3. track

Saliency map

Task Relevance Map

Attention Guidance Map

Localized object recognition
“legs”

Visual Scene

“target found”Inhibition of return

Update relevance

Not implemented

Implemented



Task Specification
• Currently, we accept tasks such as 

“who is doing what to whom?”

Action 
Keywords

“catch”

Subject 
Keywords

“man”

Object 
Keywords

none

Task specification
“what is man catching?”



Human

WomanMan

Nail

LegHand

Finger Toe

Hand related 
Action 

HoldGrasp

Related
Contains

Is a

Includes

Similar
Part of

Real entity

Abstract entity

Action ontology

Subject ontology

Is a

Includes

Part of

Contains



Human RA

Karate

Leg RAHand RA

Is a

Includes

Real entity

Abstract entity

0.65     0.35    

0 0

Leg RA

Hand RA

Leg RA

Hand RA
Properties

Probability of occurrence

What to store in the nodes?



What to store in the edges?
Task: “find hand”

Man

Hand

Finger

Contains

Part of

Suppose we find Finger and Man,
what is more relevant?

Granularity g(u,v)
g((Hand, Finger)) > g((Hand, Man))

In general, g(contains) > g(part of)
g(includes) > g(is a)
g(similar) = g(related)



Edge information
Task: “find hand”

Suppose we find Pen and Leaf,
what is more relevant?

Co-occurrence(u,v)
Probability of joint occurrence of u       
and v

Leaf

Hand related 
object

Pen

Includes Includes

Hand

Related

P(Hand occurs/Pen occurs) 
Vs

P(Hand occurs/ Leaf occurs)

P(Hand, Pen/ Pen) 
Vs

P(Hand, Leaf/ Leaf)

P(Pen is relevant/ Hand is relevant) 
Vs

P(Leaf is relevant/ Hand is relevant) 



Working Memory and Task Graph
• Working memory creates and maintains the task 

graph
• Initial task graph is created using the task 

keywords and is expanded using “is a” and 
“related” relations.

Man

Hand related 
action

Is a Includes

CatchMan

Hand

Part ofContains

RelatedHand related 
object

Task: What is man catching?

Subject ontologyObject ontology Action ontology



Example 1
• Task1: find the faces in the scene
• Task2: find what the people are eating

Original scene     TRM after 5 fixations   TRM after 20 fixations



Example 2
• Task1: find the cars in the scene

• Task2: find the buildings in the scene

Original scene     TRM after 20 fixations    Attention trajectory



Conclusion
• Our broader goal is to model how internal 

scene representations are influenced by 
current behavioral goals.

• As a first step, we estimate task-relevance 
of attended locations.

• At each instant, our model guides attention 
based on relevance and salience of entities 
in the scene.



Outlook

• Neuromorphic vision algorithms provide robust 
front-end for extended scene analysis

• To be useful, analysis needs to highly depend on 
task and behavioral priorities

• Thus the challenge is to develop algorithms that 
can extract the currently relevant  “minimal 
subscene” from incoming rich scanpaths

• Such algorithms will use a collaboration between 
fast parallel computation of scene gist/layout and 
slower attentional scanning of scene details


