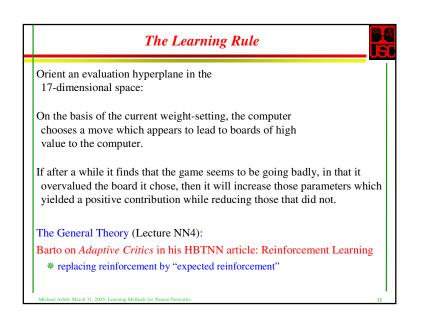
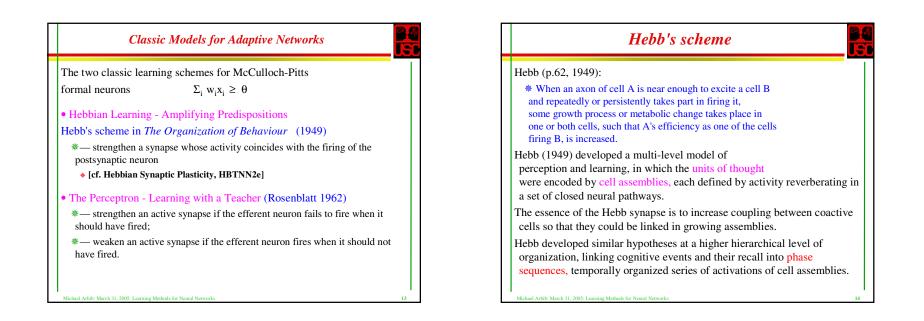
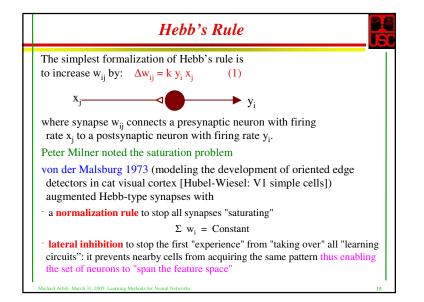
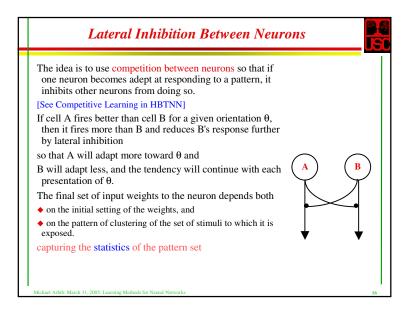


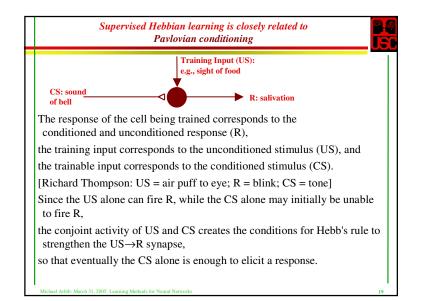
_	Approximating an Evaluation Surface by a (Hyper)plane
Sa	nmuel's 1959 strategy was
	in addition to cutting down the "lookahead"
to	guess that
	* the evaluation function was approximately linear.
	using a hyperplane approximation to the actual evaluation to play a good game:
z :	$= w_1 x_1 + + w_{16} x_{16} - \theta$ (a linear approximation)
fo	r some choices of the 16 weights $w_1,, w_{16}$, and θ .
In	deciding which is better of two boards
th	e constant θ is irrelevant —
	there are only 16 numbers to find in getting the best linear pproximation.
	11

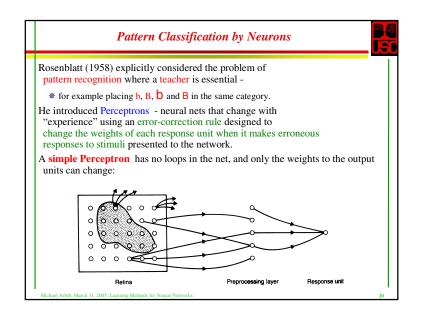


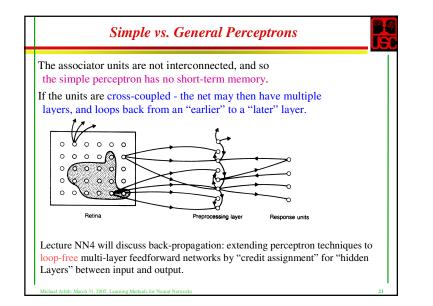


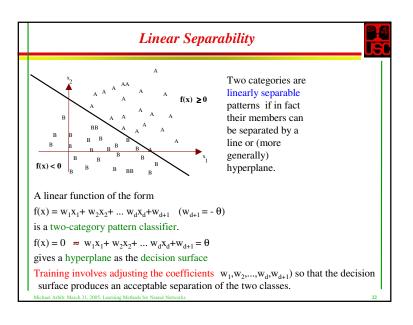


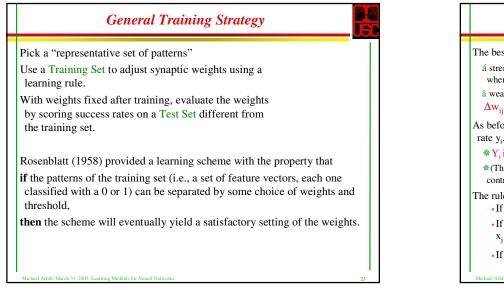


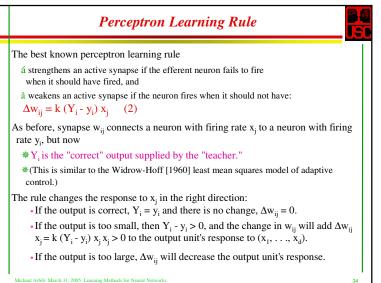


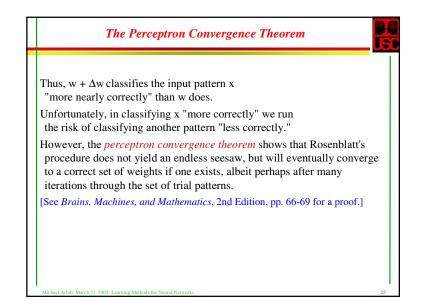


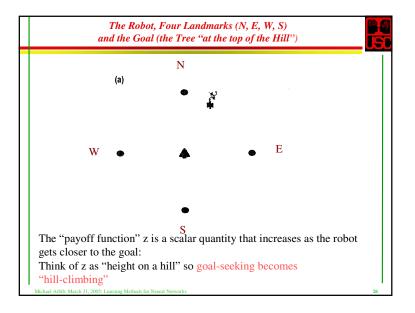


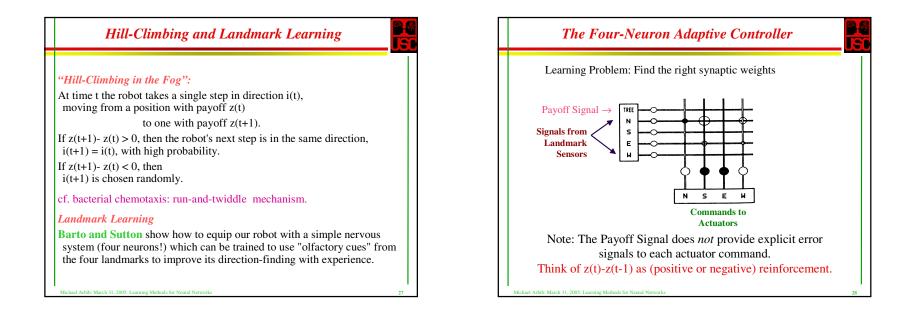


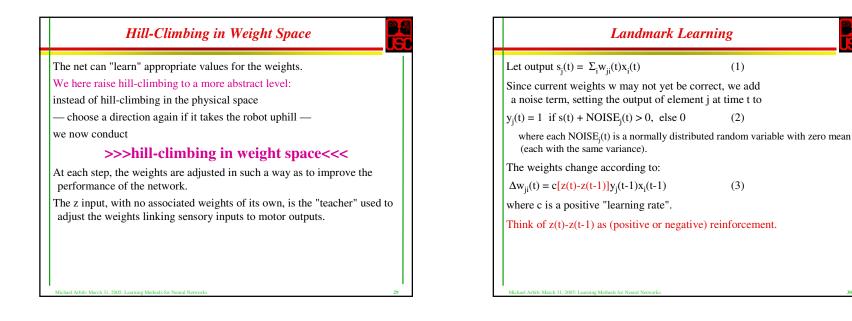












$\Delta w_{ji}(t) = c[z(t)-z(t-1)]y_j(t-1)x_i(t-1)$

w_{ii} will only change if

Michael Arbib: March 31, 2005: Learning Methods for Neural N

a j-movement takes place $(y_j(t-1)>0)$ and

the "robot" is near the i-landmark $(x_i(t-1)>0)$

It will then change in the direction of z(t)-z(t-1).

Again view z(t) as "height on a hill":

wiji increases and a j-movement becomes more likely ---

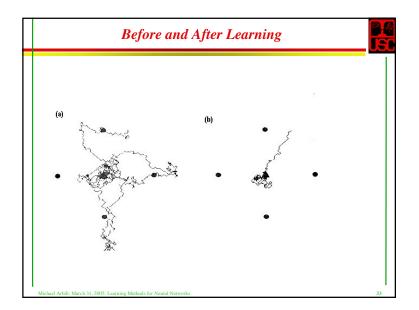
if z increases (the "robot" moves uphill); while

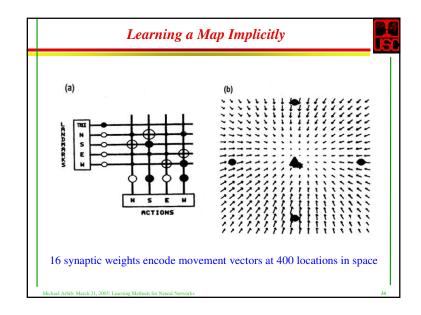
 w_{ji} decreases and a j-movement becomes less likely if the robot moves downhill.

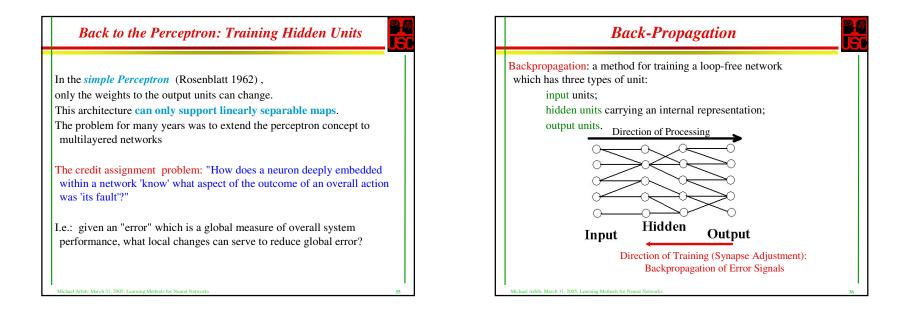
The w's are shifting in an abstract 16-dimensional space of weight-settings.

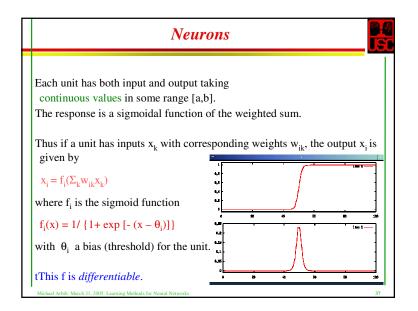
Climbing a MetahillThe weights can be evaluated globally by the extent
to which they determine an uphill movement, associating
with a particular vector w the sum $S(w) = \Sigma_x E\{[z(x+y(x,w)) - z(x)]\}$ (4)z(x) is the payoff value associated with position x
z(x+y(x,w)) is the payoff associated with the position
that is reached by taking the step y(x,w)
determined by (1) and (2) using the weights w, and
the expectation E averages over all the values of the noise terms in (2).We may think of S as defining height on a "metahill."The rule (3) tells us how to change weights in a way which is likely to increase S
using just local information based on the robot's current step in physical space.

Michael Arbib: March 31, 2005: Learning Methods for Neural No









Backpropagation

In a layered loop-free net, changing the weights w_{ij} according to the gradient descent rule may be accomplished equivalently by **back propagation**, working back from the output units. {See HBTNN I.3 for proof.}

Proposition: Consider a layered loop-free net with error measure $E = \Sigma_k (t_k - o_k)^2$, where k ranges over designated "output units," and let the weights w_{ij} be changed according to the gradient descent rule

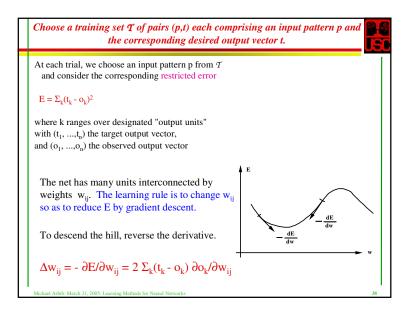
 $\Delta w_{ii} = -\partial E / \partial w_{ii} = 2 \Sigma_k (t_k - o_k) \partial o_k / \partial w_{ii}.$

Then the weights may be changed inductively, working back from the output units: Δw_{ii} is proportional to $\delta_i o_i$, where:

Basis Step: $\delta_i = (t_i - o_i)f_i'$ for an output unit. [cf. Perceptron - but with added f_i' term.] Induction Step: If i is a hidden unit, and if δ_k is known for all units which receive unit i's output then $\delta_i = (\Sigma_k \, \delta_k w_{ki}) f_i'$, where k runs over all units which receive unit i's output. [unit i receives error propagated back from a unit k to the extent to which i affects k.]

The "error signal" δ_i propagates back layer by layer.

Michael Arbib: March 31, 2005: Learning Methods for Neural Networks



Backpropagation is Non-Biological
<i>Heuristic:</i>
The above theorem tells us how to compute Δw_{ij} for gradient descent.
It does not guarantee that the above step-size is appropriate to reach the minimum;
It does not guarantee that the minimum, if reached, is global.
The back-propagation rule defined by this proposition is thus a heuristic rule, not one guaranteed to find a global minimum.
Since it is heuristic, it may also be applied to neural nets which are loop- free, even if not strictly layered.
Non-Biological
See HBTNN articles on "Backpropagation" and "Hebbian Synaptic Plasticity". (Optional reading.)
Michael Arbib: March 31, 2005: Learning Methods for Neural Networks 40

