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Multicore Programming Primer 
and Programming Competition

Introduction
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The “Software Crisis”

“To put it quite bluntly: as long as there were no 
machines, programming was no problem at all; 
when we had a few weak computers, 
programming became a mild problem, and now 
we have gigantic computers, programming has 
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture
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The First Software Crisis

● Time Frame: ’60s and ’70s

● Problem:  Assembly Language Programming
Computers could handle larger more complex programs

● Needed to get Abstraction and Portability without 
losing Performance
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How Did We Solve the 
First Software Crisis?

● High-level languages for von-Neumann machines
FORTRAN and C

● Provided “common machine language” for 
uniprocessors

Single memory image

Single flow of control

Common Properties

ISA

Functional Units

Register File
Differences:



5 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Second Software Crisis

● Time Frame: ’80s and ’90s

● Problem:  Inability to build and maintain complex and 
robust applications requiring multi-million lines of code 
developed by hundreds of programmers

Computers could handle larger more complex programs

● Needed to get Composability, Malleability and 
Maintainability

High-performance was not an issue left for Moore’s Law 
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How Did We Solve the 
Second Software Crisis?

● Object Oriented Programming
C++, C# and Java

● Also…
Better tools
– Component libraries, Purify  
Better software engineering methodology 
– Design patterns, specification, testing, code reviews
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● Solid boundary between Hardware and Software

● Programmers don’t have to know anything about the 
processor

High level languages abstract away the processors
– Ex: Java bytecode is machine independent 
Moore’s law does not require the programmers to know 
anything about the processors to get good speedups

● Programs are oblivious of the processor work on all 
processors

A program written in ’70 using C still works and is much faster 
today

● This abstraction provides a lot of freedom for the 
programmers

Today: 
Programmers are Oblivious to Processors
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The Origins of a Third Crisis

● Time Frame: 2005 to 20??

● Problem: Sequential performance is left behind by Moore’s law

● Needed continuous and reasonable performance improvements 
to support new features
to support larger datasets

● While sustaining portability, malleability and maintainability 
without unduly increasing complexity faced by the programmer 

critical to keep-up with the current rate of evolution in software
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The March to Multicore:
Uniprocessor Performance (SPECint)

Specint2000
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The March to Multicore:
Uniprocessor Performance (SPECint)

● General-purpose unicores have stopped historic 
performance scaling

Power consumption
Wire delays
DRAM access latency
Diminishing returns of more instruction-level parallelism

From David Patterson
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Power Consumption (watts)
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Power Efficiency (watts/spec)
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Range of a Wire in One Clock Cycle
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DRAM Access Latency

● Access times are a speed 
of light issue

● Memory technology is also 
changing

SRAM are getting harder 
to scale
DRAM is no longer 
cheapest cost/bit

● Power efficiency is an issue 
here as well
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Diminishing Returns 

● The ’80s: Superscalar expansion 
50% per year improvement in performance
Transistors applied to implicit parallelism
– pipeline processor (10 CPI --> 1 CPI)

● The ’90s: The Era of Diminishing Returns
Squeaking out the last implicit parallelism
– 2-way to 6-way issue, out-of-order issue, branch prediction
– 1 CPI --> 0.5 CPI
performance below expectations
projects delayed & canceled 

● The ’00s: The Beginning of the Multicore Era
The need for Explicit Parallelism 
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Unicores are on the verge of extinction 
Multicores are here 
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Requirements and Outcomes

● Requirements
A good programmer with experience 
Fluent in C

● Outcomes
Know fundamental concepts of parallel programming 
(both hardware and software)
Understand issues of parallel performance 
Able to synthesize a fairly complex parallel program
Hands-on experience with the IBM Cell processor
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The Project
● You proposed the projects
● We selected 7 teams

Mainly by the strength of the project proposals
● Seven Great Projects

Distributed Real-time Ray Tracer
Global Illumination
Linear Algebra Pack
Molecular Dynamics Simulator
Speech Synthesizer
Soft Radio
Backgammon Tutor 

● Project Characteristics 
Ambitious but accomplishable 
Important and Relevant
Opportunity to sizzle

● Get them started ASAP! 
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A Note of Caution

● Cell processor is very new
● It is not an easy architecture to work with
● The tool chain is thin and brittle
● Most of the staff have limited experience 
● Projects you are doing are of your own making. 

They aren’t canned exercises that are tried and proven. 
● You will face unexpected problems.
● WE ARE ALL IN THIS TOGETHER!!
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Grading

● Mini Quizzes 16%
At the beginning of each class day
5 minutes each

● Lab Projects 24%

● Final Group Project 60%
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Final Competition 

● The competition will be decided on
Performance 
Completeness 
Algorithmic complexity
Demo and Presentation

● The winning team will
Get gift certificates ($150 each)
Be invited to IBM TJ Watson Research Center for a day
– Tour of the facilities
– Present your project
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Staff
● Prof. Saman Amarasinghe (saman@mit.edu)

Interested in languages, compilers and computer architecture
Raw Processor (with Prof. Anant Agarwal)
StreamIt language 
SUIF parallelizing compiler

● Dr. Rodric Rabbah (rabbah@mit.edu)
Currently a researcher at IBM Watson Research Center
Was a research scientist at CSAIL before that
Interested in compilers, computer architecture and FPGAs

● TAs
David Zhang (dxzhang@mit.edu)
– Course 6 M.Eng.
Phil Sung (psung@mit.edu)
– Course 6 M.Eng.
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Guest Lectures

● Dr. Michael Perrone
IBM Watson Research Center
Expert in Cell Architecture and Application Development

● Prof. Alan Edelman
Math and CS. Interested in parallel algorithms

● Prof. Arvind
Parallel architectures, compilers and languages

● Dr. Bradley Kuszmaul
Research scientist at CSAIL working on Cilk

● Mike Acton 
Professional game developer

● Bill Thies
CSAIL PhD candidate
Architect of StreamIt
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Lecture Organization

Implicit Explicit

Hardware Compiler
Superscalar
Processors

(start of Lecture 3)

Parallelizing
Compilers

(Lectures 11 & 12)

LibraryLanguages
Concurrency

(Lecture 4)

Design Patterns
(Lectures 5,6 7)

StreamIt (Lecture 8)
Star-P (Lecture 13)
BlueSpec (Lecture 14)
Cilk (Lecture 15)

Extracting Parallelism 



27 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Schedule
 Monday Tuesday Wednesday Thursday Friday 

10:00 – 
10:55 

Lecture 1: Course 
Introduction 

Recitation 1: Getting 
to Know Cell 

Lecture 3: 
Introduction to 
Parallel 
Architectures 

Lecture 5: Parallel 
Programming 
Concepts Jan 

8 
11:05 – 
12:00 

Lecture 2: 
Introduction to Cell 
Processor 

 

Lecture 4: 
Introduction to 
Concurrent 
Programming 

Project Reviews 

Lecture 6: Design 
Patterns for Parallel 
Programming I 

10:00 – 
10:55 

Lecture 7: Design 
Patterns for Parallel 
Programming II 

Recitation 4: Cell 
Debugging Tools 

Lecture 9: 
Debugging and 
Performance 
Monitoring Jan 

15 
11:05 – 
12:00 

Holiday 
Recitation 2-3: Cell 
Programming 
Hands-On 

Lecture 8: StreamIt 
Language  

Lecture 10: 
Performance 
Optimizations 

10:00 – 
10:55 

Lecture 11: Classic 
Parallelizing 
Compilers 

Lecture 13: Star-P Lecture 15: Cilk 
Jan 
22 

11:05 – 
12:00 

Lecture 12: StreamIt 
Parallelizing 
Compiler 

Recitation 5, 6: Cell 
Performance 
Monitoring Tools Lecture 14: 

Synthesizing Parallel 
Programs 

 
Lecture 16: Anatomy 
of a Game 

10:00 – 
10:55 

Lecture 17: The Raw 
Experience Jan 

29 11:05 – 
12:00 18: The Future 

  Group Presentations Awards & Reception 

 


