
Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 1

Multicore Programming Primer
and Programming Competition

Introduction

2 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The “Software Crisis”

“To put it quite bluntly: as long as there were no
machines, programming was no problem at all;
when we had a few weak computers,
programming became a mild problem, and now
we have gigantic computers, programming has
become an equally gigantic problem."

-- E. Dijkstra, 1972 Turing Award Lecture

3 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The First Software Crisis

● Time Frame: ’60s and ’70s

● Problem: Assembly Language Programming
Computers could handle larger more complex programs

● Needed to get Abstraction and Portability without
losing Performance

4 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

How Did We Solve the
First Software Crisis?

● High-level languages for von-Neumann machines
FORTRAN and C

● Provided “common machine language” for
uniprocessors

Single memory image

Single flow of control

Common Properties

ISA

Functional Units

Register File
Differences:

5 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Second Software Crisis

● Time Frame: ’80s and ’90s

● Problem: Inability to build and maintain complex and
robust applications requiring multi-million lines of code
developed by hundreds of programmers

Computers could handle larger more complex programs

● Needed to get Composability, Malleability and
Maintainability

High-performance was not an issue left for Moore’s Law

6 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

How Did We Solve the
Second Software Crisis?

● Object Oriented Programming
C++, C# and Java

● Also…
Better tools
– Component libraries, Purify
Better software engineering methodology
– Design patterns, specification, testing, code reviews

7 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● Solid boundary between Hardware and Software

● Programmers don’t have to know anything about the
processor

High level languages abstract away the processors
– Ex: Java bytecode is machine independent
Moore’s law does not require the programmers to know
anything about the processors to get good speedups

● Programs are oblivious of the processor work on all
processors

A program written in ’70 using C still works and is much faster
today

● This abstraction provides a lot of freedom for the
programmers

Today:
Programmers are Oblivious to Processors

8 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Origins of a Third Crisis

● Time Frame: 2005 to 20??

● Problem: Sequential performance is left behind by Moore’s law

● Needed continuous and reasonable performance improvements
to support new features
to support larger datasets

● While sustaining portability, malleability and maintainability
without unduly increasing complexity faced by the programmer

critical to keep-up with the current rate of evolution in software

9 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

1

10

100

1000

10000

100000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

The March to Multicore:
Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

10 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The March to Multicore:
Uniprocessor Performance (SPECint)

Specint2000

1.00

10.00

100.00

1000.00

10000.00

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07

i ntel 386

i ntel 486

i ntel pent i um

i ntel pent i um 2

i ntel pent i um 3
i ntel pent i um 4

i ntel i tani um

A l pha 21064

A l pha 21164

A l pha 21264

Spar c

Super Spar c

Spar c64

M i ps

HP PA
Power PC

AM D K6

AM D K7

AM D x86-64

11 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The March to Multicore:
Uniprocessor Performance (SPECint)

● General-purpose unicores have stopped historic
performance scaling

Power consumption
Wire delays
DRAM access latency
Diminishing returns of more instruction-level parallelism

From David Patterson

12 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Power Consumption (watts)

Power

1

10

100

1000

85 87 89 91 93 95 97 99 01 03 05 07

intel 386

intel 486

intel pentium

intel pentium 2

intel pentium 3

intel pentium 4

intel i tanium

Alpha 21064

Alpha 21164

Alpha 21264

Spar c

Super Spar c

Spar c64

Mips

HP PA

Power PC

AMD K6

AMD K7

AMD x86-64

13 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Power Efficiency (watts/spec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1982 1984 1987 1990 1993 1995 1998 2001 2004 2006

Year

W
at

ts
/S

pe
c

intel 386
intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc64
M ips
HP PA
Power PC
AM D K6
AM D K7
AM D x86-64

14 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Range of a Wire in One Clock Cycle

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

P
ro

ce
ss

 (m
ic

ro
ns

)

700 MHz

1.25 GHz

2.1 GHz

6 GHz
10 GHz

13.5 GHz

• 400 mm2 Die
• From the SIA Roadmap

15 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

DRAM Access Latency

● Access times are a speed
of light issue

● Memory technology is also
changing

SRAM are getting harder
to scale
DRAM is no longer
cheapest cost/bit

● Power efficiency is an issue
here as well

1

100

10000

1000000

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

Year

Pe
rf

or
m

an
ce

µProc
60%/yr.

(2X/1.5yr)

DRAM
9%/yr.

(2X/10 yrs)

16 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Diminishing Returns

● The ’80s: Superscalar expansion
50% per year improvement in performance
Transistors applied to implicit parallelism
– pipeline processor (10 CPI --> 1 CPI)

● The ’90s: The Era of Diminishing Returns
Squeaking out the last implicit parallelism
– 2-way to 6-way issue, out-of-order issue, branch prediction
– 1 CPI --> 0.5 CPI
performance below expectations
projects delayed & canceled

● The ’00s: The Beginning of the Multicore Era
The need for Explicit Parallelism

17 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

AMD Opteron
Dual Core

Intel Montecito
1.7 Billion transistors

Dual Core IA/64
Intel Tanglewood
Dual Core IA/64

Intel Pentium Extreme
3.2GHz Dual Core

Intel Tejas & Jayhawk
Unicore (4GHz P4)

Intel Dempsey
Dual Core Xeon

Intel Pentium D
(Smithfield)

Cancelled

Intel Yonah
Dual Core Mobile

IBM Power 6
Dual Core

IBM Power 4 and 5
Dual Cores Since 2001

IBM Cell
Scalable Multicore

Sun Olympus and Niagara
8 Processor Cores

MIT Raw
16 Cores

Since 2002

… 1H 2005 1H 2006 2H 20062H 20052H 2004

Unicores are on the verge of extinction
Multicores are here

18 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

1985 199019801970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Ambric
AM2045

Multicores are Here

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2Athlon

19 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Requirements and Outcomes

● Requirements
A good programmer with experience
Fluent in C

● Outcomes
Know fundamental concepts of parallel programming
(both hardware and software)
Understand issues of parallel performance
Able to synthesize a fairly complex parallel program
Hands-on experience with the IBM Cell processor

20 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Project
● You proposed the projects
● We selected 7 teams

Mainly by the strength of the project proposals
● Seven Great Projects

Distributed Real-time Ray Tracer
Global Illumination
Linear Algebra Pack
Molecular Dynamics Simulator
Speech Synthesizer
Soft Radio
Backgammon Tutor

● Project Characteristics
Ambitious but accomplishable
Important and Relevant
Opportunity to sizzle

● Get them started ASAP!

21 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

A Note of Caution

● Cell processor is very new
● It is not an easy architecture to work with
● The tool chain is thin and brittle
● Most of the staff have limited experience
● Projects you are doing are of your own making.

They aren’t canned exercises that are tried and proven.
● You will face unexpected problems.
● WE ARE ALL IN THIS TOGETHER!!

22 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Grading

● Mini Quizzes 16%
At the beginning of each class day
5 minutes each

● Lab Projects 24%

● Final Group Project 60%

23 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Final Competition

● The competition will be decided on
Performance
Completeness
Algorithmic complexity
Demo and Presentation

● The winning team will
Get gift certificates ($150 each)
Be invited to IBM TJ Watson Research Center for a day
– Tour of the facilities
– Present your project

24 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Staff
● Prof. Saman Amarasinghe (saman@mit.edu)

Interested in languages, compilers and computer architecture
Raw Processor (with Prof. Anant Agarwal)
StreamIt language
SUIF parallelizing compiler

● Dr. Rodric Rabbah (rabbah@mit.edu)
Currently a researcher at IBM Watson Research Center
Was a research scientist at CSAIL before that
Interested in compilers, computer architecture and FPGAs

● TAs
David Zhang (dxzhang@mit.edu)
– Course 6 M.Eng.
Phil Sung (psung@mit.edu)
– Course 6 M.Eng.

25 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Guest Lectures

● Dr. Michael Perrone
IBM Watson Research Center
Expert in Cell Architecture and Application Development

● Prof. Alan Edelman
Math and CS. Interested in parallel algorithms

● Prof. Arvind
Parallel architectures, compilers and languages

● Dr. Bradley Kuszmaul
Research scientist at CSAIL working on Cilk

● Mike Acton
Professional game developer

● Bill Thies
CSAIL PhD candidate
Architect of StreamIt

26 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Lecture Organization

Implicit Explicit

Hardware Compiler
Superscalar
Processors

(start of Lecture 3)

Parallelizing
Compilers

(Lectures 11 & 12)

LibraryLanguages
Concurrency

(Lecture 4)

Design Patterns
(Lectures 5,6 7)

StreamIt (Lecture 8)
Star-P (Lecture 13)
BlueSpec (Lecture 14)
Cilk (Lecture 15)

Extracting Parallelism

27 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Schedule
 Monday Tuesday Wednesday Thursday Friday

10:00 –
10:55

Lecture 1: Course
Introduction

Recitation 1: Getting
to Know Cell

Lecture 3:
Introduction to
Parallel
Architectures

Lecture 5: Parallel
Programming
Concepts Jan

8
11:05 –
12:00

Lecture 2:
Introduction to Cell
Processor

Lecture 4:
Introduction to
Concurrent
Programming

Project Reviews

Lecture 6: Design
Patterns for Parallel
Programming I

10:00 –
10:55

Lecture 7: Design
Patterns for Parallel
Programming II

Recitation 4: Cell
Debugging Tools

Lecture 9:
Debugging and
Performance
Monitoring Jan

15
11:05 –
12:00

Holiday
Recitation 2-3: Cell
Programming
Hands-On

Lecture 8: StreamIt
Language

Lecture 10:
Performance
Optimizations

10:00 –
10:55

Lecture 11: Classic
Parallelizing
Compilers

Lecture 13: Star-P Lecture 15: Cilk
Jan
22

11:05 –
12:00

Lecture 12: StreamIt
Parallelizing
Compiler

Recitation 5, 6: Cell
Performance
Monitoring Tools Lecture 14:

Synthesizing Parallel
Programs

Lecture 16: Anatomy
of a Game

10:00 –
10:55

Lecture 17: The Raw
Experience Jan

29 11:05 –
12:00 18: The Future

 Group Presentations Awards & Reception

