
Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 11

Parallelizing Compilers

2 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

3 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Types of Parallelism

● Instruction Level Parallelism
(ILP)

● Task Level Parallelism (TLP)

● Loop Level Parallelism (LLP)
or Data Parallelism

● Pipeline Parallelism

● Divide and Conquer
Parallelism

Æ Scheduling and Hardware

Æ Mainly by hand

Æ Hand or Compiler Generated

Æ Hardware or Streaming

Æ Recursive functions

4 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Why Loops?

● 90% of the execution time in 10% of the code
� Mostly in loops

● If parallel, can get good performance
� Load balancing

● Relatively easy to analyze

5 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Programmer Defined Parallel Loop

● FORALL
� No “loop carried

dependences”
� Fully parallel

● FORACROSS
� Some “loop carried

dependences”

6 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

● SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

…
Iters = ceiling(N/NUMPROC);

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1
Barrier();

7 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

● Code that fork a function
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
…
void func1(integer myPid)
{

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

}

8 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

9 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Parallelizing Compilers

● Finding FORALL Loops out of FOR loops

● Examples
FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1

10 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Iteration Space
● N deep loops Æ n-dimensional discrete

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as
coordinates in iteration space
� i̅ = [i1, i2, i3,…, in]

0 1 2 3 4 5 6 7  J
0
1
2
3
4
5
6

I Æ

11 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Iteration Space
● N deep loops Æ n-dimensional discrete

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as
coordinates in iteration space

● Sequential execution order of iterations
Î Lexicographic order
[0,0], [0,1], [0,2], …, [0,6], [0,7],

[1,1], [1,2], …, [1,6], [1,7],
[2,2], …, [2,6], [2,7],

………
[6,6], [6,7],

0 1 2 3 4 5 6 7  J
0
1
2
3
4
5
6

I Æ

12 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Iteration Space
● N deep loops Æ n-dimensional discrete

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as
coordinates in iteration space

● Sequential execution order of iterations
Î Lexicographic order

● Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc

0 1 2 3 4 5 6 7  J
0
1
2
3
4
5
6

I Æ

13 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Iteration Space
● N deep loops Æ n-dimensional discrete

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● An affine loop nest
� Loop bounds are integer linear functions of

constants, loop constant variables and
outer loop indexes

� Array accesses are integer linear functions
of constants, loop constant variables and
loop indexes

0 1 2 3 4 5 6 7  J
0
1
2
3
4
5
6

I Æ

14 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Iteration Space
● N deep loops Æ n-dimensional discrete

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Affine loop nest Æ Iteration space as a
set of liner inequalities

0 ≤ I
I ≤ 6

I ≤ J
J ≤ 7

0 1 2 3 4 5 6 7  J
0
1
2
3
4
5
6

I Æ

15 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Data Space

● M dimensional arrays Æ m-dimensional discrete cartesian space
� a hypercube

Integer A(10)

Float B(5, 6) 0 1 2 3 4 5
0
1
2
3
4

0 1 2 3 4 5 6 7 8 9

16 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Dependences

● True dependence
a =

= a
● Anti dependence

= a
a =

● Output dependence
a =
a =

● Definition:
Data dependence exists for a dynamic instance i and j iff
� either i or j is a write operation
� i and j refer to the same variable
� i executes before j

● How about array accesses within loops?

17 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

18 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5
Iteration Space Data Space

19 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5
Iteration Space Data Space

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

20 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Accesses in a loop

FOR I = 0 to 5
A[I+1] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5
Iteration Space Data Space

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

21 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I+2] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5
Iteration Space Data Space

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

22 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Accesses in a loop

FOR I = 0 to 5
A[2*I] = A[2*I+1] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5
Iteration Space Data Space

= A[2*+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

23 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Recognizing FORALL Loops

● Find data dependences in loop
� For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) in
which it refers to a location in the array that the second access also
refers to in at least one of the later dynamic instances (iterations).
Then there is a data dependence between the statements

� (Note that same array can refer to itself – output dependences)

● Definition
� Loop-carried dependence:

dependence that crosses a loop boundary

● If there are no loop carried dependences Æ parallelizable

24 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Data Dependence Analysis

● Example
FOR I = 0 to 5

A[I+1] = A[I] + 1

● Is there a loop-carried dependence between A[I+1] and A[I]
� Is there two distinct iterations iw and ir such that A[iw+1] is the same location

as A[ir]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir

● Is there a dependence between A[I+1] and A[I+1]
� Is there two distinct iterations i1 and i2 such that A[i1+1] is the same location

as A[i2+1]
� ∃ integers i1, i2 0 ≤ i1, i2 ≤ 5 i1 ≠ i2 i1+ 1 = i2 +1

25 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Integer Programming

● Formulation
� ∃ an integer vector i̅ such that Â i̅ ≤ b̅ where

Â is an integer matrix and b̅ is an integer vector

● Our problem formulation for A[i] and A[i+1]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5 iw ≠ ir iw+ 1 = ir
� iw ≠ ir is not an affine function

– divide into 2 problems
– Problem 1 with iw < ir and problem 2 with ir < iw
– If either problem has a solution Æ there exists a dependence

� How about iw+ 1 = ir
– Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1

26 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Integer Programming Formulation

● Problem 1
0 ≤ iw
iw ≤ 5
0 ≤ ir
ir ≤ 5
iw < ir
iw+ 1 ≤ ir
ir ≤ iw+ 1

27 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Integer Programming Formulation

● Problem 1
0 ≤ iw Æ -iw ≤ 0
iw ≤ 5 Æ iw ≤ 5
0 ≤ ir Æ -ir ≤ 0
ir ≤ 5 Æ ir ≤ 5
iw < ir Æ iw - ir ≤ -1
iw+ 1 ≤ ir Æ iw - ir ≤ -1
ir ≤ iw+ 1 Æ -iw + ir ≤ 1

28 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Integer Programming Formulation

● Problem 1
0 ≤ iw Æ -iw ≤ 0 -1 0 0
iw ≤ 5 Æ iw ≤ 5 1 0 5
0 ≤ ir Æ -ir ≤ 0 0 -1 0
ir ≤ 5 Æ ir ≤ 5 0 1 5
iw < ir Æ iw - ir ≤ -1 1 -1 -1
iw+ 1 ≤ ir Æ iw - ir ≤ -1 1 -1 -1
ir ≤ iw+ 1 Æ -iw + ir ≤ 1 -1 1 1

● and problem 2 with ir < iw

Â b̅

29 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Generalization

● An affine loop nest
FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)

……
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

● Solve 2*n problems of the form
– i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn
– i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in
– i1 = j1, i2 = j2,…… in-1 < jn-1
– i1 = j1, i2 = j2,…… jn-1 < in-1

…………………
– i1 = j1, i2 < j2
– i1 = j1, j2 < i2
– i1 < j1
– j1 < i1

30 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Multi-Dimensional Dependence

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

J

I

31 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Multi-Dimensional Dependence

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I+1, J] + 1

J

I

J

I

32 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
B[I] = B[I-1] + 1

J

I

J

I

33 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
A[I] = A[I-1] + 1

J

I

J

I

34 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
B[I] = B[I-1] + 1

J

I

J

I

35 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

36 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Increasing Parallelization Opportunities

● Scalar Privatization
● Reduction Recognition
● Induction Variable Identification
● Array Privatization
● Interprocedural Parallelization
● Loop Transformations
● Granularity of Parallelism

37 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Scalar Privatization

● Example
FOR i = 1 to n

X = A[i] * 3;
B[i] = X;

● Is there a loop carried dependence?
● What is the type of dependence?

38 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Privatization

● Analysis:
� Any anti- and output- loop-carried dependences

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

39 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Privatization

● Need a final assignment to maintain the correct value after the
loop nest

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n];

40 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Another Example

● How about loop-carried true dependences?
● Example

FOR i = 1 to n
X = X + A[i];

● Is this loop parallelizable?

41 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Reduction Recognition

● Reduction Analysis:
� Only associative operations
� The result is never used within the loop

● Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {

FOR p = 0 to NUMPROC-1
X = X + Xtmp[p];

…

42 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Induction Variables

● Example
FOR i = 0 to N

A[i] = 2^i;
● After strength reduction

t = 1
FOR i = 0 to N

A[i] = t;
t = t*2;

● What happened to loop carried dependences?
● Need to do opposite of this!

� Perform induction variable analysis
� Rewrite IVs as a function of the loop variable

43 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Array Privatization

● Similar to scalar privatization

● However, analysis is more complex
� Array Data Dependence Analysis:

Checks if two iterations access the same location
� Array Data Flow Analysis:

Checks if two iterations access the same value

● Transformations
� Similar to scalar privatization
� Private copy for each processor or expand with an additional

dimension

44 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Interprocedural Parallelization

● Function calls will make a loop unparallelizatble
� Reduction of available parallelism
� A lot of inner-loop parallelism

● Solutions
� Interprocedural Analysis
� Inlining

45 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Interprocedural Parallelization

● Issues
� Same function reused many times
� Analyze a function on each trace Æ Possibly exponential
� Analyze a function once Æ unrealizable path problem

● Interprocedural Analysis
� Need to update all the analysis
� Complex analysis
� Can be expensive

● Inlining
� Works with existing analysis
� Large code bloat Æ can be very expensive

46 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● A loop may not be parallel as is
● Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

Loop Transformations
J

I

47 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● A loop may not be parallel as is
● Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

● After loop Skewing
FOR i = 1 to 2*N-3

FORPAR j = max(1,i-N+2) to min(i, N-1)
A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

Loop Transformations
J

I

J

I

48 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Granularity of Parallelism

● Example
FOR i = 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● Gets transformed into
FOR i = 1 to N-1

Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j];
Barrier();

● Inner loop parallelism can be expensive
� Startup and teardown overhead of parallel regions
� Lot of synchronization
� Can even lead to slowdowns

J

I

49 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Granularity of Parallelism

● Inner loop parallelism can be expensive

● Solutions
� Don’t parallelize if the amount of work within the loop is

too small
or
� Transform into outer-loop parallelism

50 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outer Loop Parallelism

● Example
FOR i = 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● After Loop Transpose
FOR j = 1 to N-1

FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● Get mapped into
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

Barrier();

J

I

I

J

51 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

52 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Generating Transformed Loop Bounds

for i = 1 to n do
X[i] =...
for j = 1 to i - 1 do

... = X[j]

● Assume we want to parallelize
the i loop

● What are the loop bounds?

● Use Projections of the
Iteration Space
� Fourier-Motzkin Elimination

Algorithm

j

i

(p, i, j)
1 ≤ i ≤ n

1 ≤ j ≤ i-1
i = p

53 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Space of Iterations

(p, i, j)
1 ≤ i ≤ n

1 ≤ j ≤ i-1
i = p

p

i
j

for p = 2 to n do
i = p
for j = 1 to i - 1 do

54 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

i = p

for p = 2 to n do

for j = 1 to i - 1 do

p

i
j

Projections

55 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Projections

i = p

for p = 2 to n do

for j = 1 to i - 1 do

p = my_pid()
if p >= 2 and p <= n then

i = p
for j = 1 to i - 1 do

56 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Fourier Motzkin Elimination

1 ≤ i ≤ n
1 ≤ j ≤ i-1
i = p

● Project i Æ j Æ p

● Find the bounds of i
1 ≤ i

j+1≤ i
p ≤ i

i ≤ n
i ≤ p

i: max(1, j+1, p) to min(n, p)
i: p

● Eliminate i
1 ≤ n
j+1≤ n
p ≤ n

1 ≤ p
j+1≤ p
p ≤ p

1 ≤ j
● Eliminate redundant

p ≤ n
1 ≤ p
j+1≤ p
1 ≤ j

● Continue onto finding bounds of j

57 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Fourier Motzkin Elimination

p ≤ n
1 ≤ p
j+1≤ p
1 ≤ j

● Find the bounds of j
1 ≤ j

j≤ p -1
j: 1 to p – 1

● Eliminate j
1 ≤ p – 1
p ≤ n
1 ≤ p

● Eliminate redundant
2 ≤ p
p≤ n

● Find the bounds of p
2 ≤ p

p≤ n
p: 2 to n

p = my_pid()
if p >= 2 and p <= n then

for j = 1 to p - 1 do
i = p

58 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation

59 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Code Generation

● Cache Coherent Shared Memory Machine
� Generate code for the parallel loop nest

● No Cache Coherent Shared Memory
or Distributed Memory Machines
� Generate code for the parallel loop nest
� Identify communication
� Generate communication code

60 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Identify Communication

● Location Centric
� Which locations written by processor 1 is used by

processor 2?
� Multiple writes to the same location, which one is used?
� Data Dependence Analysis

● Value Centric
� Who did the last write on the location read?

– Same processor Æ just read the local copy
– Different processor Æ get the value from the writer
– No one Æ Get the value from the original array

61 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● Input: Read access and
write access(es)

for i = 1 to n do
for j = 1 to n do
A[j] = …
… = X[j-1]

● Output: a function mapping
each read iteration to a write
creating that value

Last Write Trees (LWT)

j

i
Location Centric DependencesValue Centric Dependences

iw ir=

jw jr 1–=

T

F

1 j r<

⊥

62 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The Combined Space

computation decomposition for:

precv

irecv

jrecv

psend

isend

the receive iterations……… 1 ≤ irecv ≤ n
0 ≤ jrecv ≤ irecv -1

the last-write relation…………… isend = irecv

receive iterations…………. Precv = irecv

send iterations…………….. Psend = isend

Non-local communication……... Precv ≠ Psend

63 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Space

jrecv

isend

psend

irecv

precv

for i = 1 to n do
for j = 1 to n do
A[j] = …
… = X[j-1]

1 ≤ irecv ≤ n
0 ≤ jrecv ≤ irecv -1

isend = irecv

Precv = irecv

Psend = isend

Precv ≠ Psend

64 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Loop Nests

Send Loop Nest
for precv = 2 to n do

irecv = precv
for jrecv = 1 to irecv - 1 do

psend = jrecv
isend = psend
receive X[jrecv] from

iteration isend in
processor psend

for psend = 1 to n - 1 do
isend = psend
for precv = isend + 1 to n do

irecv = precv
jrecv = isend
send X[isend] to

iteration (irecv, jrecv) in
processor precv

irecv

jrecv

psend

precv

isend

Receive Loop Nest

irecv

jrecv

psend

precv

isend

65 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Merging Loops

Computation Send Recv

It
e r

at
io

n s

66 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Merging Loop Nests

if p == 1 then
X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
if p >= 2 and p <= n - 1 then

X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

if p == n then
X[p] =...
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

67 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Communication Optimizations

● Eliminating redundant communication
● Communication aggregation
● Multi-cast identification
● Local memory management

68 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Summary

● Automatic parallelization of loops with arrays
� Requires Data Dependence Analysis
� Iteration space & data space abstraction
� An integer programming problem

● Many optimizations that’ll increase parallelism

● Transforming loop nests and communication code generation
� Fourier-Motzkin Elimination provides a nice framework

