

Lecture 11

Parallelizing Compilers

Prof. Saman Amarasinghe, MIT.

Outline

Parallel Execution

- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Types of Parallelism

- Instruction Level Parallelism (ILP)
- Task Level Parallelism (TLP)
- → Scheduling and Hardware
- \rightarrow Mainly by hand
- Loop Level Parallelism (LLP) or Data Parallelism
- → Hand or Compiler Generated

- Pipeline Parallelism
- Divide and Conquer Parallelism

- → Hardware or Streaming
- → Recursive functions

Why Loops?

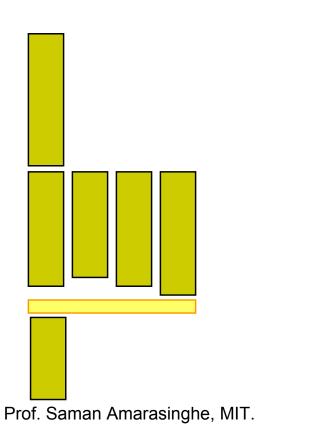
- 90% of the execution time in 10% of the code
 Mostly in loops
- If parallel, can get good performance
 - Load balancing
- Relatively easy to analyze

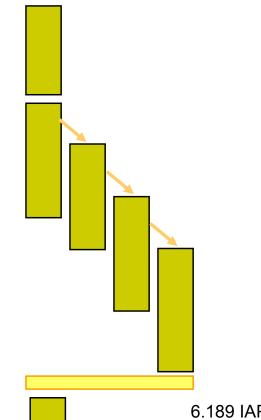
Programmer Defined Parallel Loop

• FORALL

- No "loop carried dependences"
- Fully parallel

- FORACROSS
 - Some "loop carried dependences"





Parallel Execution

```
Example
FORPAR I = 0 to N
A[I] = A[I] + 1
```

```
    Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
    FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1
```

```
    SPMD (Single Program, Multiple Data) Code
    If(myPid == 0) {
```

```
...
Iters = ceiling(N/NUMPROC);

Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
Barrier();
```

Prof. Saman Amarasinghe, MIT.

Parallel Execution

```
Example
FORPAR I = 0 to N
A[I] = A[I] + 1
```

```
    Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
    FOR P = 0 to NUMPROC-1
FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1
```

```
• Code that fork a function
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
...
void func1(integer myPid)
{
    FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
        A[I] = A[I] + 1
}
```

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Parallelizing Compilers

Finding FORALL Loops out of FOR loops

```
Examples
FOR I = 0 to 5

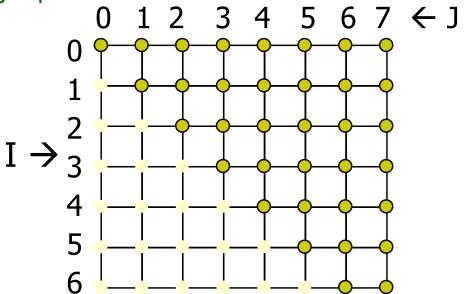
A[I+1] = A[I] + 1

FOR I = 0 to 5

A[I] = A[I+6] + 1
For I = 0 to 5

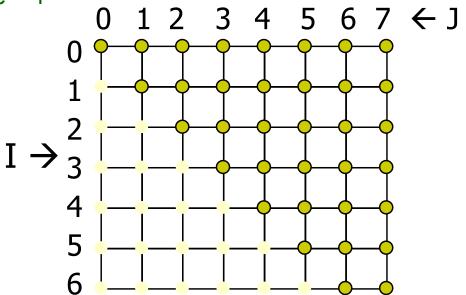
A[2*I] = A[2*I + 1] + 1
```

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1



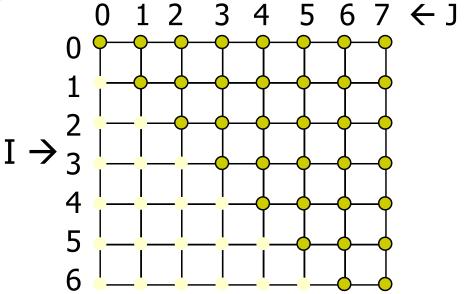
- Iterations are represented as coordinates in iteration space
 - $i^{-} = [i_1, i_2, i_3, ..., i_n]$

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1



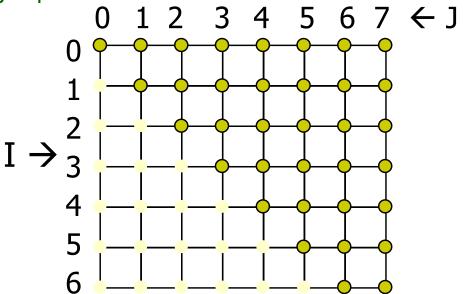
- Iterations are represented as coordinates in iteration space

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1



- Iterations are represented as coordinates in iteration space
- Sequential execution order of iterations
 Lexicographic order
- Iteration i is lexicograpically less than j , i < j iff there exists c s.t. $i_1 = j_1$, $i_2 = j_2$,... $i_{c-1} = j_{c-1}$ and $i_c < j_c$

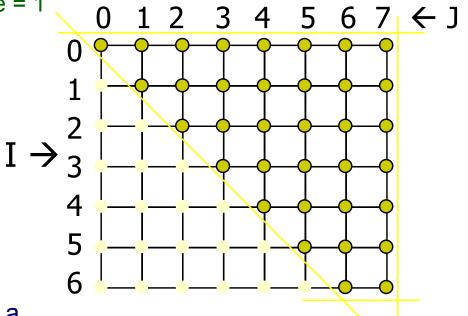
- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1



- An affine loop nest
 - Loop bounds are integer linear functions of constants, loop constant variables and outer loop indexes
 - Array accesses are integer linear functions of constants, loop constant variables and loop indexes

- N deep loops → n-dimensional discrete cartesian space
 - Normalized loops: assume step size = 1

FOR I = 0 to 6 FOR J = I to 7



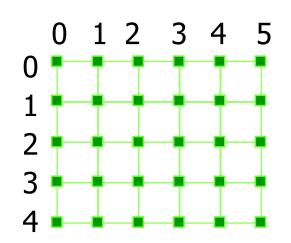
Affine loop nest → Iteration space as a set of liner inequalities

Prof. Saman Amarasinghe, MIT.

Data Space

- M dimensional arrays \rightarrow m-dimensional discrete cartesian space
 - a hypercube

Float B(5, 6)

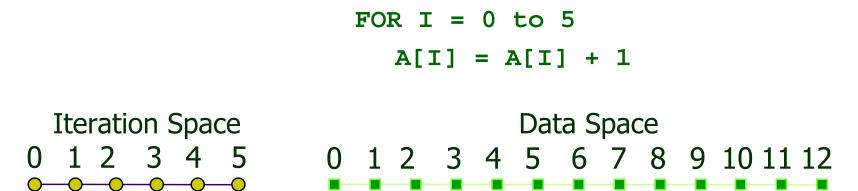


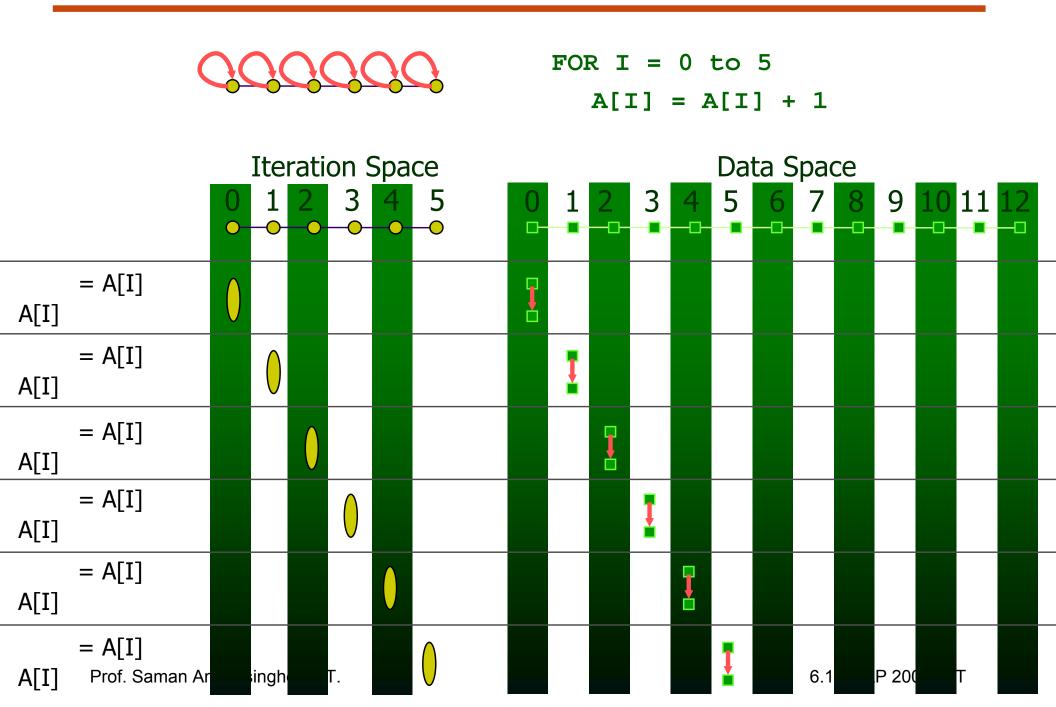
Dependences

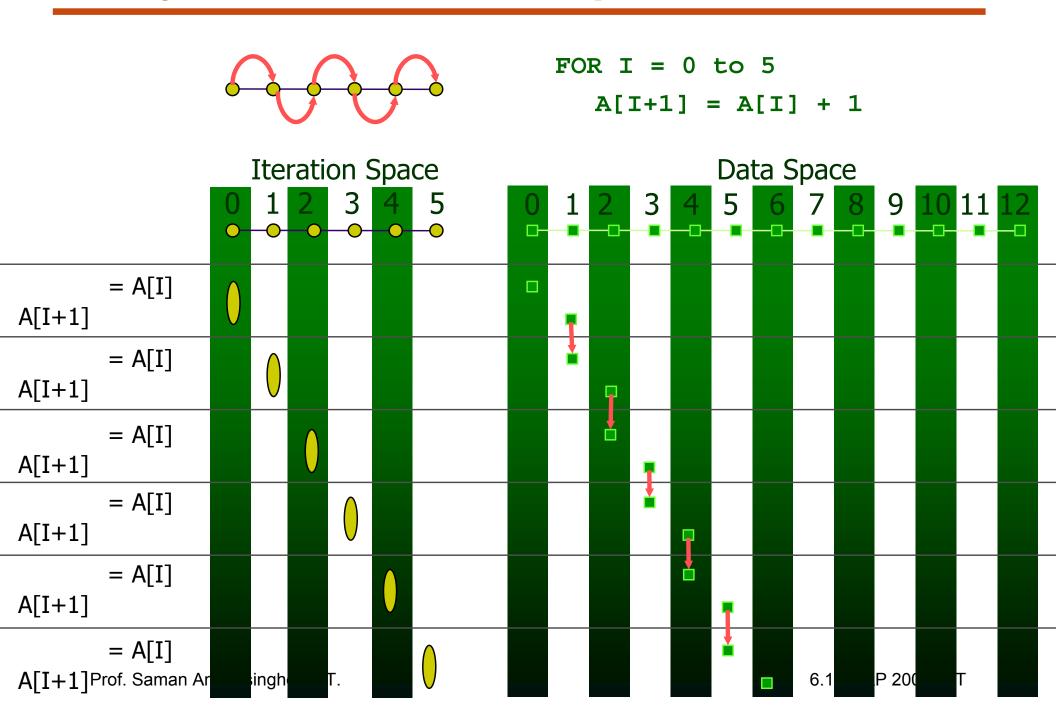
- True dependence
 - a =
 - = a
- Anti dependence
 - = a
 - a =
- Output dependence
 - a =
 - a =
- Definition: Data dependence exists for a dynamic instance i and j iff
 - either i or j is a write operation
 - i and j refer to the same variable
 - i executes before j
- How about array accesses within loops?

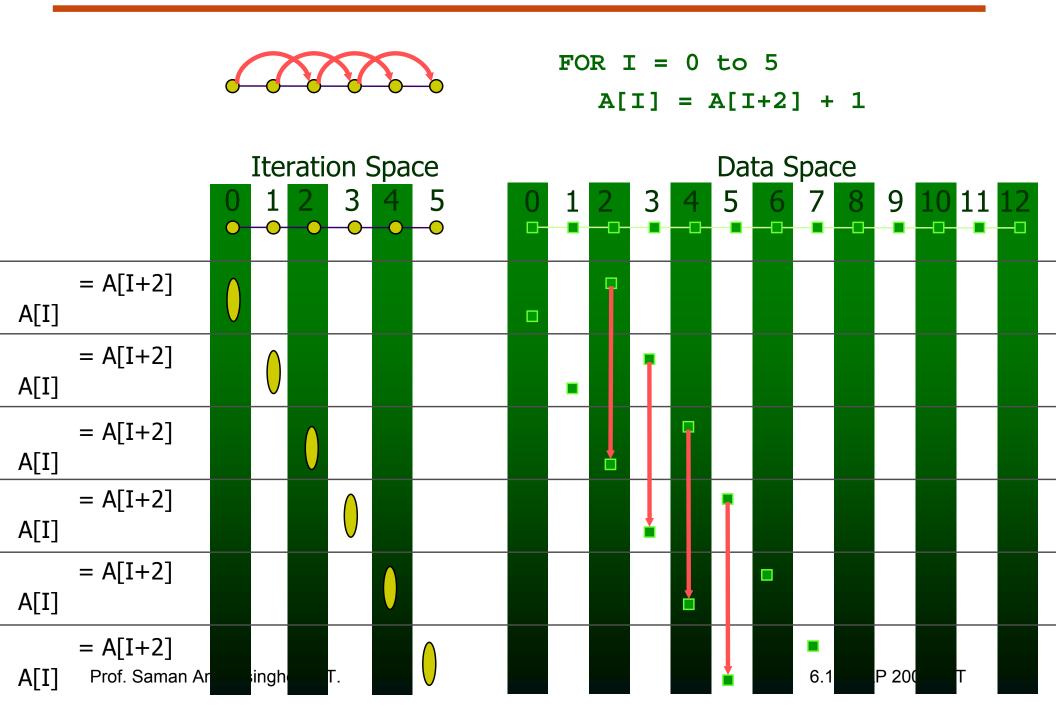
Outline

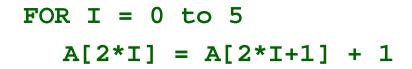
- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

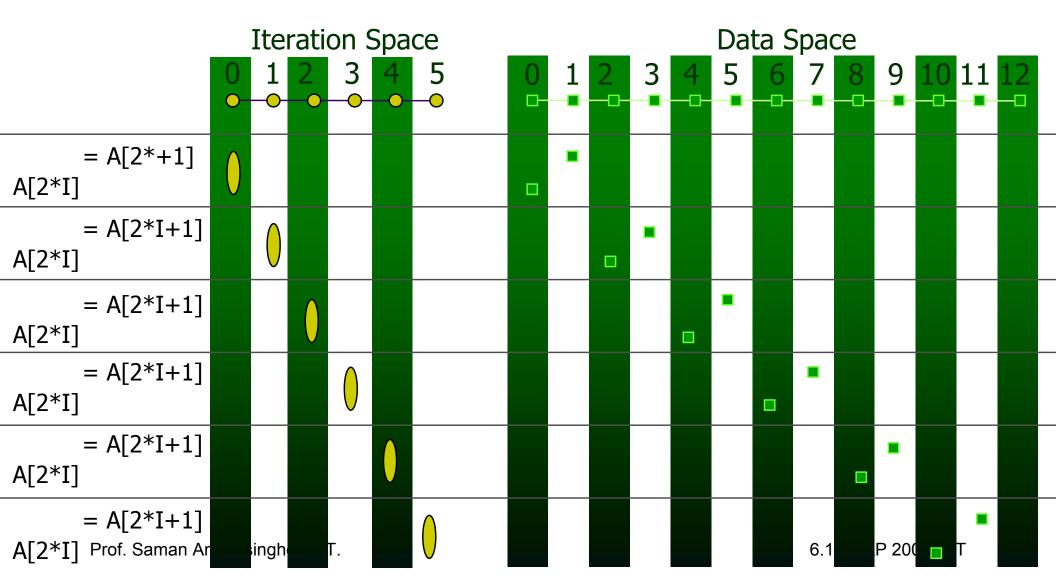












Recognizing FORALL Loops

- Find data dependences in loop
 - For every pair of array acceses to the same array
 - If the first access has at least one dynamic instance (an iteration) in which it refers to a location in the array that the second access also refers to in at least one of the later dynamic instances (iterations). Then there is a data dependence between the statements
 - (Note that same array can refer to itself output dependences)
- Definition
 - Loop-carried dependence: dependence that crosses a loop boundary
- If there are no loop carried dependences \rightarrow parallelizable

Data Dependence Analysis

- Example
 FOR I = 0 to 5
 A[I+1] = A[I] + 1
- Is there a loop-carried dependence between A[I+1] and A[I]
 - Is there two distinct iterations i_w and i_r such that A[i_w+1] is the same location as A[i_r]
 - ∃ integers i_w , i_r 0 ≤ i_w , i_r ≤ 5 $i_w \neq i_r$ i_w + 1 = i_r
- Is there a dependence between A[I+1] and A[I+1]
 - Is there two distinct iterations i₁ and i₂ such that A[i₁+1] is the same location as A[i₂+1]
 - ∃ integers i_1, i_2 $0 \le i_1, i_2 \le 5$ $i_1 \ne i_2$ $i_1 + 1 = i_2 + 1$

Integer Programming

• Formulation

- ∃ an integer vector i such that i ≤ b where
 Â is an integer matrix and b is an integer vector
- Our problem formulation for A[i] and A[i+1]
 - ∃ integers i_w , i_r 0 ≤ i_w , i_r ≤ 5 $i_w \neq i_r$ i_w + 1 = i_r
 - $i_w \neq i_r$ is not an affine function
 - divide into 2 problems
 - Problem 1 with $i_w < i_r$ and problem 2 with $i_r < i_w$
 - If either problem has a solution \rightarrow there exists a dependence
 - How about $i_w + 1 = i_r$
 - Add two inequalities to single problem
 - $i_w + 1 \le i_r$, and $i_r \le i_w + 1$

Integer Programming Formulation

Problem 1

$$0 \le i_w$$

$$i_w \le 5$$

$$0 \le i_r$$

$$i_r \le 5$$

$$i_w < i_r$$

$$i_w + 1 \le i_r$$

$$i_r \le i_w + 1$$

1

Integer Programming Formulation

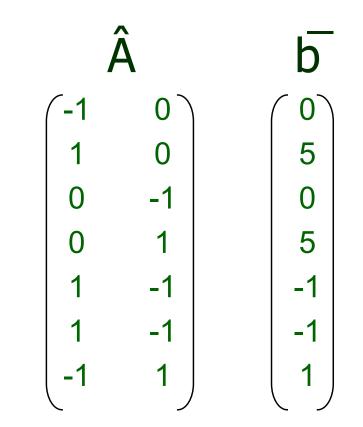
• Problem 1

$0 \le i_w$	\rightarrow	$-i_w \le 0$
i _w ≤ 5	\rightarrow	i _w ≤ 5
0 ≤ i _r	\rightarrow	-i _r ≤ 0
i _r ≤ 5	\rightarrow	i _r ≤ 5
i _w < i _r	\rightarrow	i _w - i _r ≤ -1
$i_w + 1 \le i_r$	\rightarrow	$i_w - i_r \le -1$
i _r ≤ i _w + 1	\rightarrow	-i _w + i _r ≤ 1

Integer Programming Formulation

Problem 1

$0 \le i_w$	\rightarrow	$-i_w \le 0$
i _w ≤ 5	\rightarrow	i _w ≤ 5
$0 \le i_r$	\rightarrow	-i _r ≤ 0
i _r ≤ 5	\rightarrow	i _r ≤ 5
i _w < i _r	\rightarrow	i _w - i _r ≤ -1
i _w + 1 ≤ i _r	\rightarrow	$i_w - i_r \le -1$
i _r ≤ i _w + 1	\rightarrow	-i _w + i _r ≤ 1



and problem 2 with i_r < i_w

Generalization

• An affine loop nest
FOR
$$i_1 = f_{11}(c_1...c_k)$$
 to $I_{u1}(c_1...c_k)$
FOR $i_2 = f_{12}(i_1, c_1...c_k)$ to $I_{u2}(i_1, c_1...c_k)$
.....
FOR $i_n = f_{1n}(i_1...i_{n-1}, c_1...c_k)$ to $I_{un}(i_1...i_{n-1}, c_1...c_k)$
 $A[f_{a1}(i_1...i_n, c_1...c_k), f_{a2}(i_1...i_n, c_1...c_k), ..., f_{am}(i_1...i_n, c_1...c_k)]$

• Solve 2*n problems of the form

$$-i_{1} = j_{1}, i_{2} = j_{2}, \dots i_{n-1} = j_{n-1}, i_{n} < j_{n}$$

$$-i_{1} = j_{1}, i_{2} = j_{2}, \dots i_{n-1} = j_{n-1}, j_{n} < i_{n}$$

$$-i_{1} = j_{1}, i_{2} = j_{2}, \dots i_{n-1} < j_{n-1}$$

$$-i_{1} = j_{1}, i_{2} = j_{2}, \dots j_{n-1} < i_{n-1}$$

$$\dots$$

$$-i_{1} = j_{1}, i_{2} < j_{2}$$

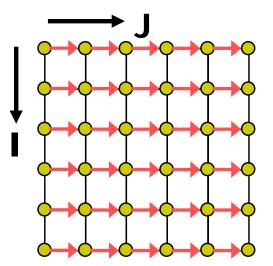
$$-i_{1} = j_{1}, j_{2} < i_{2}$$

$$-i_{1} < j_{1}$$

$$-j_{1} < i_{1}$$

Prof. Saman Amarasinghe, MIT.

Multi-Dimensional Dependence

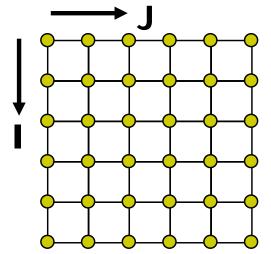


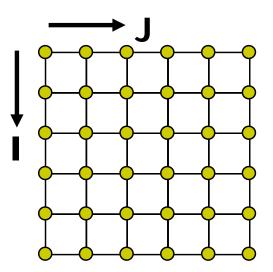
Multi-Dimensional Dependence

Prof. Saman Amarasinghe, MIT.

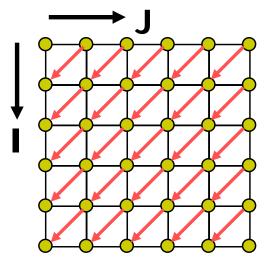
What is the Dependence?

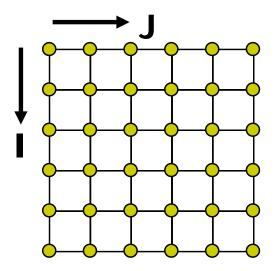
```
FOR I = 1 to n
  FOR J = 1 to n
    A[I, J] = A[I-1, J+1] + 1
FOR I = 1 to n
  FOR J = 1 to n
    B[I] = B[I-1] + 1
```



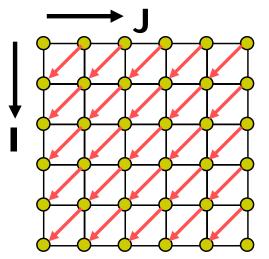


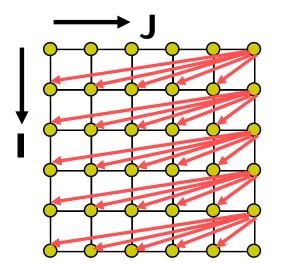
What is the Dependence?





What is the Dependence?





Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Increasing Parallelization Opportunities

- Scalar Privatization
- Reduction Recognition
- Induction Variable Identification
- Array Privatization
- Interprocedural Parallelization
- Loop Transformations
- Granularity of Parallelism

• Example

- Is there a loop carried dependence?
- What is the type of dependence?

Privatization

- Analysis:
 - Any anti- and output- loop-carried dependences

```
    Eliminate by assigning in local context
    FOR i = 1 to n
    integer Xtmp;
    Xtmp = A[i] * 3;
    B[i] = Xtmp;
```

Eliminate by expanding into an array
 FOR i = 1 to n
 Xtmp[i] = A[i] * 3;
 B[i] = Xtmp[i];

Privatization

- Need a final assignment to maintain the correct value after the loop nest
- Eliminate by assigning in local context

```
FOR i = 1 to n
integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp
```

```
    Eliminate by expanding into an array
    FOR i = 1 to n
    Xtmp[i] = A[i] * 3;
    B[i] = Xtmp[i];
    X = Xtmp[n];
```

• How about loop-carried true dependences?

• Example

FOR i = 1 to n

X = X + A[i];

• Is this loop parallelizable?

Reduction Recognition

- Reduction Analysis:
 - Only associative operations
 - The result is never used within the loop

```
• Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)
        Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {
   FOR p = 0 to NUMPROC-1
        X = X + Xtmp[p];
....
```

Induction Variables

- Example
 FOR i = 0 to N
 A[i] = 2ⁱ;
- After strength reduction

```
t = 1
FOR i = 0 to N
A[i] = t;
t = t*2;
```

- What happened to loop carried dependences?
- Need to do opposite of this!
 - Perform induction variable analysis
 - Rewrite IVs as a function of the loop variable

Array Privatization

- Similar to scalar privatization
- However, analysis is more complex
 - Array Data Dependence Analysis: Checks if two iterations access the same location
 - Array Data Flow Analysis: Checks if two iterations access the same value
- Transformations
 - Similar to scalar privatization
 - Private copy for each processor or expand with an additional dimension

Interprocedural Parallelization

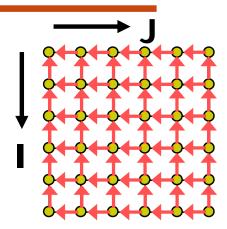
- Function calls will make a loop unparallelizatble
 - Reduction of available parallelism
 - A lot of inner-loop parallelism
- Solutions
 - Interprocedural Analysis
 - Inlining

Interprocedural Parallelization

- Issues
 - Same function reused many times
 - Analyze a function on each trace \rightarrow Possibly exponential
 - Analyze a function once \rightarrow unrealizable path problem
- Interprocedural Analysis
 - Need to update all the analysis
 - Complex analysis
 - Can be expensive
- Inlining
 - Works with existing analysis
 - Large code bloat \rightarrow can be very expensive

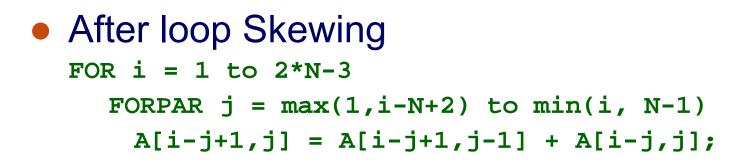
Loop Transformations

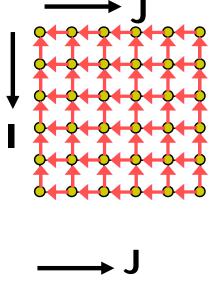
- A loop may not be parallel as is
- Example
 FOR i = 1 to N-1
 FOR j = 1 to N-1
 A[i,j] = A[i,j-1] + A[i-1,j];

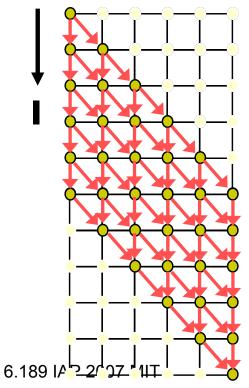


Loop Transformations

- A loop may not be parallel as is
- Example
 FOR i = 1 to N-1
 FOR j = 1 to N-1
 A[i,j] = A[i,j-1] + A[i-1,j];



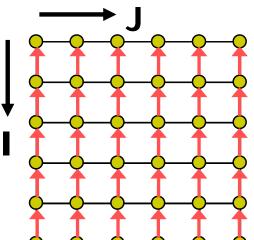




Granularity of Parallelism

```
• Gets transformed into
FOR i = 1 to N-1
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)
A[i,j] = A[i,j] + A[i-1,j];
Barrier();
```


- Startup and teardown overhead of parallel regions
- Lot of synchronization
- Can even lead to slowdowns



Granularity of Parallelism

• Inner loop parallelism can be expensive

- Solutions
 - Don't parallelize if the amount of work within the loop is too small

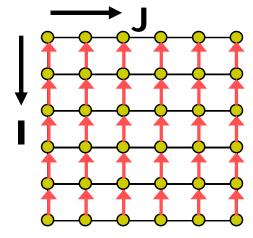
or

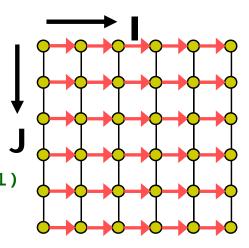
Transform into outer-loop parallelism

Outer Loop Parallelism

Example
 FOR i = 1 to N-1
 FOR j = 1 to N-1
 A[i,j] = A[i,j] + A[i-1,j];

- Get mapped into



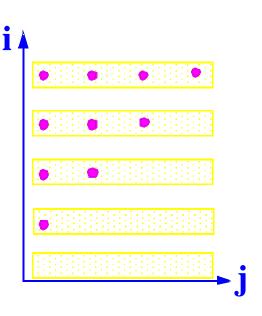


Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

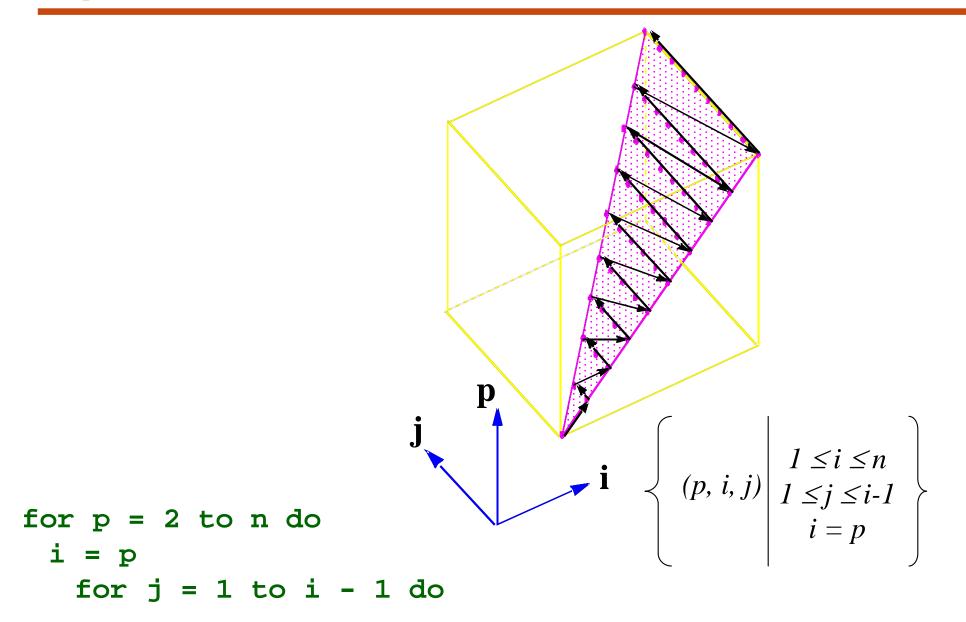
Generating Transformed Loop Bounds

- Assume we want to parallelize the i loop
- What are the loop bounds?
- Use Projections of the Iteration Space
 - Fourier-Motzkin Elimination Algorithm

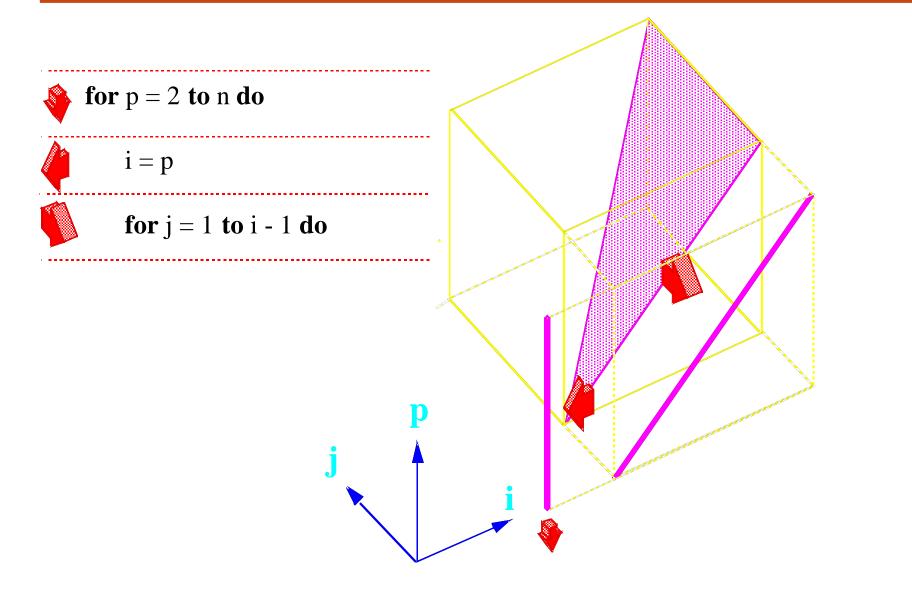


$$\left\{ \begin{array}{c} (p, i, j) \\ i \leq j \leq i - 1 \\ i = p \end{array} \right\}$$

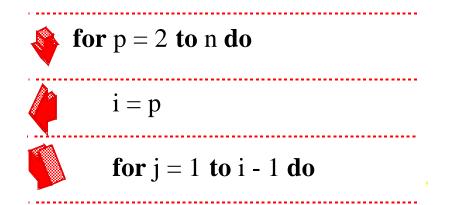
Space of Iterations



Projections



Projections



Prof. Saman Amarasinghe, MIT.

Fourier Motzkin Elimination

- $1 \le i \le n$ $1 \le j \le i-1$ i = p
- Project i \rightarrow j \rightarrow p
- Find the bounds of i
 - 1 ≤ i j+1≤ i
 - p≤i
 - i≤n
- *i* ≤ *p* i: max(1, j+1, p) to min(n, p) i: p

- Eliminate i $1 \leq n$ *j*+1≤*n* $p \le n$ $1 \leq p$ *j*+1≤*p* $p \le p$ 1 *≤ j* Eliminate redundant $p \le n$ $1 \leq p$ *j*+1≤*p* 1 ≤ j
- Continue onto finding bounds of j

Fourier Motzkin Elimination

- $p \le n$
- 1 ≤ p
- *j*+1≤p
- 1 *≤ j*
- Find the bounds of j $1 \le j$

• Eliminate j $1 \le p - 1$ $p \le n$ $1 \le p$

- Eliminate redundant
 2 ≤ p
 p≤ n
- Find the bounds of p
 2 ≤ p
 p≤ n
 p: 2 to n

p = my_pid() if p >= 2 and p <= n then for j = 1 to p - 1 do i = p

Outline

- Parallel Execution
- Parallelizing Compilers
- Dependence Analysis
- Increasing Parallelization Opportunities
- Generation of Parallel Loops
- Communication Code Generation

Communication Code Generation

- Cache Coherent Shared Memory Machine
 - Generate code for the parallel loop nest
- No Cache Coherent Shared Memory or Distributed Memory Machines
 - Generate code for the parallel loop nest
 - Identify communication
 - Generate communication code

Identify Communication

Location Centric

- Which locations written by processor 1 is used by processor 2?
- Multiple writes to the same location, which one is used?
- Data Dependence Analysis

Value Centric

- Who did the last write on the location read?
 - Same processor \rightarrow just read the local copy
 - Different processor \rightarrow get the value from the writer
 - No one \rightarrow Get the value from the original array

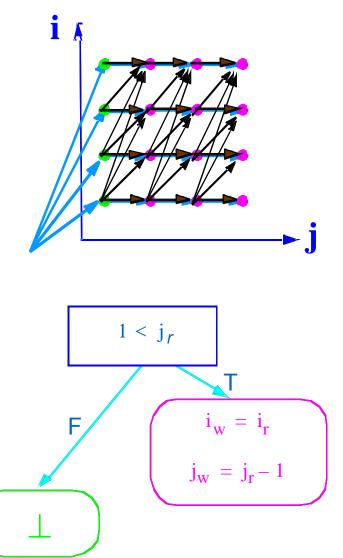
Last Write Trees (LWT)

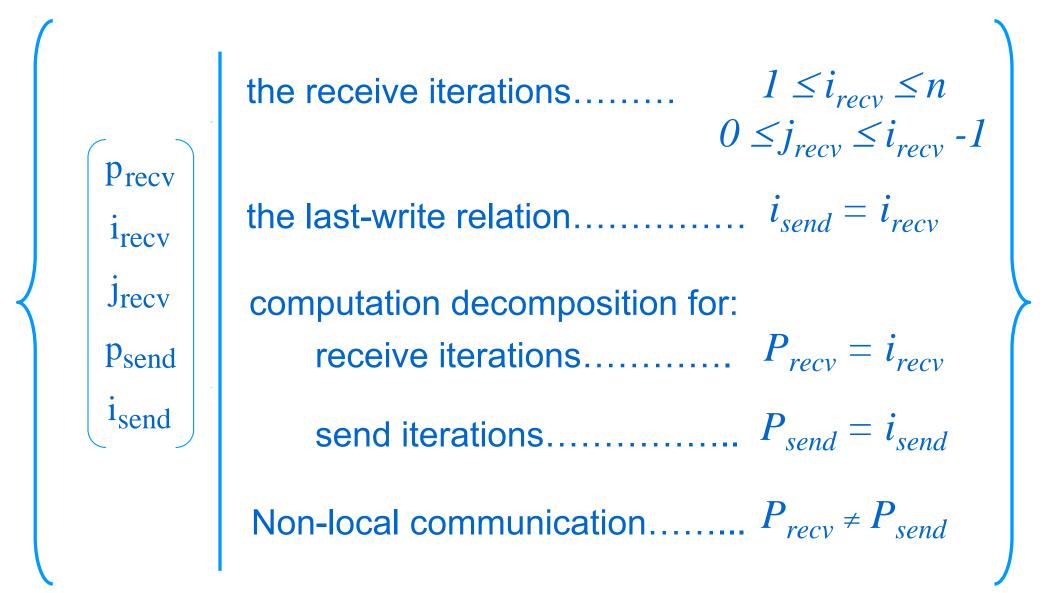
 Input: Read access and write access(es)

for i = 1 to n do
 for j = 1 to n do
 A[j] = ...
 ... = X[j-1]

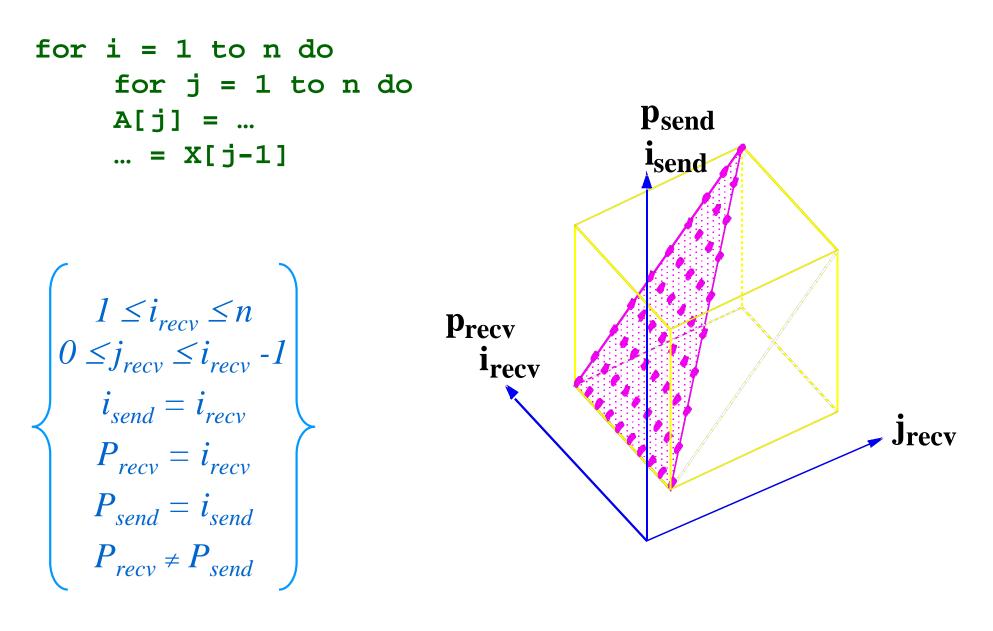
 Output: a function mapping each read iteration to a write creating that value

Location Centric Dependences



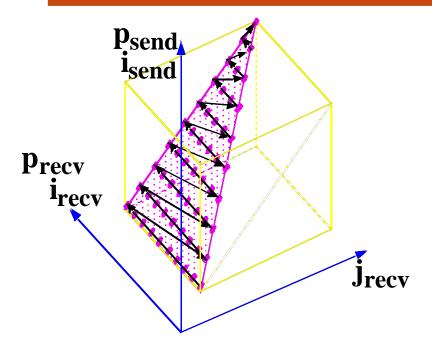


Communication Space



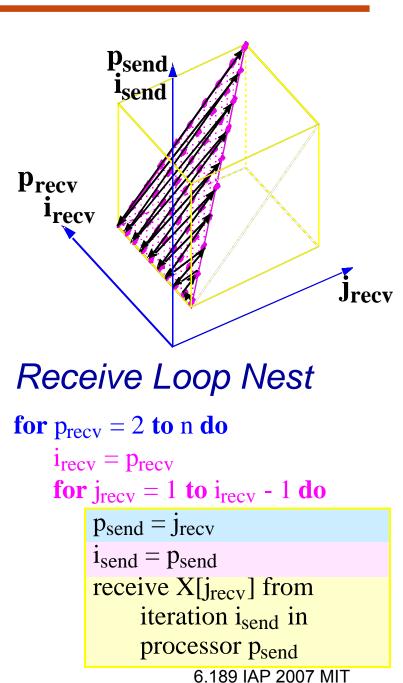
Prof. Saman Amarasinghe, MIT.

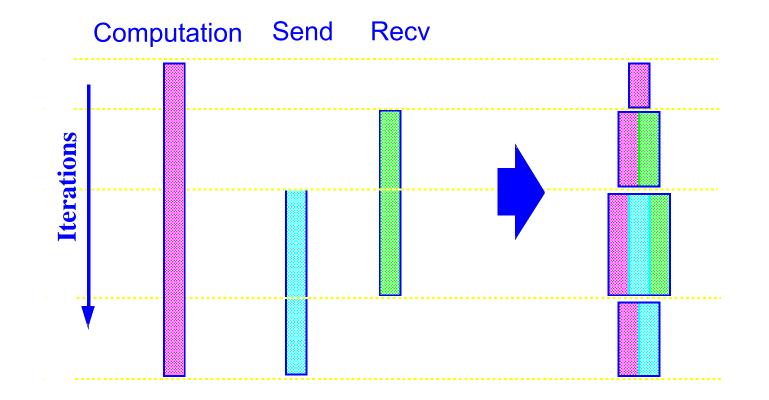
Communication Loop Nests



Send Loop Nest

for $p_{send} = 1$ to $n - 1$ do	
	$i_{send} = p_{send}$
	for $p_{recv} = i_{send} + 1$ to n do
	$i_{recv} = p_{recv}$
	$j_{recv} = i_{send}$
	send X[i _{send}] to
	iteration (i _{recv} , j _{recv}) in
	processor p _{recv}
Prof. Saman Amarasinghe, MIT.	





Merging Loop Nests

```
if p == 1 then
  ...= [q]X
  for pr = p + 1 to n do
      send X[p] to iteration (pr, p) in processor pr
if p \ge 2 and p \le n - 1 then
  X[p] =...
  for pr = p + 1 to n do
      send X[p] to iteration (pr, p) in processor pr
  for j = 1 to p - 1 do
      receive X[j] from iteration (j) in processor j
      ... = X[i]
if p == n then
  X[p] =...
  for j = 1 to p - 1 do
      receive X[j] from iteration (j) in processor j
      ... = X[i]
```

Communication Optimizations

- Eliminating redundant communication
- Communication aggregation
- Multi-cast identification
- Local memory management

Summary

- Automatic parallelization of loops with arrays
 - Requires Data Dependence Analysis
 - Iteration space & data space abstraction
 - An integer programming problem
- Many optimizations that'll increase parallelism
- Transforming loop nests and communication code generation
 - Fourier-Motzkin Elimination provides a nice framework