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Types of Parallelism

● Instruction Level Parallelism 
(ILP)

● Task Level Parallelism (TLP)

● Loop Level Parallelism (LLP) 
or Data Parallelism

● Pipeline Parallelism

● Divide and Conquer 
Parallelism

Æ Scheduling and Hardware

Æ Mainly by hand

Æ Hand or Compiler Generated

Æ Hardware or Streaming

Æ Recursive functions
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Why Loops?

● 90% of the execution time in 10% of the code
� Mostly in loops

● If parallel, can get good performance
� Load balancing 

● Relatively easy to analyze 
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Programmer Defined Parallel Loop

● FORALL 
� No “loop carried 

dependences”
� Fully parallel

● FORACROSS
� Some “loop carried 

dependences”
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Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

● SPMD (Single Program, Multiple Data) Code
If(myPid == 0) {

…
Iters = ceiling(N/NUMPROC);

}
Barrier();
FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)

A[I] = A[I] + 1
Barrier(); 
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Parallel Execution

● Example
FORPAR I = 0 to N

A[I] = A[I] + 1

● Block Distribution: Program gets mapped into
Iters = ceiling(N/NUMPROC);
FOR P = 0 to NUMPROC-1

FOR I = P*Iters to MIN((P+1)*Iters, N)
A[I] = A[I] + 1

● Code that fork a function
Iters = ceiling(N/NUMPROC);
ParallelExecute(func1);
…
void func1(integer myPid)
{ 

FOR I = myPid*Iters to MIN((myPid+1)*Iters, N)
A[I] = A[I] + 1

} 
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Parallelizing Compilers

● Finding FORALL Loops out of FOR loops

● Examples
FOR I = 0 to 5

A[I+1] = A[I] + 1

FOR I = 0 to 5
A[I] = A[I+6] + 1

For I = 0 to 5
A[2*I] = A[2*I + 1] + 1
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Iteration Space
● N deep loops Æ n-dimensional discrete 

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as 
coordinates in iteration space
� i̅ = [i1, i2, i3,…, in]

0 1 2 3 4 5  6  7   J
0
1
2
3
4
5
6

I Æ
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Iteration Space
● N deep loops Æ n-dimensional discrete 

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as 
coordinates in iteration space

● Sequential execution order of iterations 
Î Lexicographic order
[0,0],  [0,1], [0,2], …, [0,6],  [0,7],

[1,1], [1,2], …, [1,6],  [1,7],
[2,2], …, [2,6],  [2,7],

………
[6,6],  [6,7],

0 1 2 3 4 5  6  7   J
0
1
2
3
4
5
6

I Æ
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Iteration Space
● N deep loops Æ n-dimensional discrete 

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Iterations are represented as 
coordinates in iteration space

● Sequential execution order of iterations 
Î Lexicographic order

● Iteration i̅ is lexicograpically less than j̅ , i̅ < j̅ iff
there exists c s.t. i1 = j1, i2 = j2,… ic-1 = jc-1 and ic < jc

0 1 2 3 4 5  6  7   J
0
1
2
3
4
5
6

I Æ
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Iteration Space
● N deep loops Æ n-dimensional discrete 

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● An affine loop nest
� Loop bounds are integer linear functions of 

constants, loop constant variables and 
outer loop indexes

� Array accesses are integer linear functions 
of constants, loop constant variables and 
loop indexes

0 1 2 3 4 5  6  7   J
0
1
2
3
4
5
6

I Æ
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Iteration Space
● N deep loops Æ n-dimensional discrete 

cartesian space
� Normalized loops: assume step size = 1

FOR I = 0 to 6
FOR J = I to 7

● Affine loop nest Æ Iteration space as a 
set of liner inequalities 

0 ≤ I
I ≤ 6

I ≤ J
J ≤ 7

0 1 2 3 4 5  6  7   J
0
1
2
3
4
5
6

I Æ
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Data Space

● M dimensional arrays Æ m-dimensional discrete cartesian space 
� a hypercube

Integer A(10)

Float B(5, 6) 0 1 2 3 4 5  
0
1
2
3
4

0 1 2 3 4 5 6 7 8 9  
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Dependences 

● True dependence
a  =

=  a
● Anti dependence

=  a
a  =  

● Output dependence
a  =
a  =

● Definition: 
Data dependence exists for a dynamic instance i and j iff
� either i or j is a write operation
� i and j refer to the same variable
� i executes before j

● How about array accesses within loops?
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Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12  0 1 2 3 4 5  
Iteration Space Data Space
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Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12  0 1 2 3 4 5  
Iteration Space Data Space

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]

= A[I]
A[I]
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Array Accesses in a loop

FOR I = 0 to 5
A[I+1] = A[I] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12  0 1 2 3 4 5  
Iteration Space Data Space

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]

= A[I]
A[I+1]
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Array Accesses in a loop

FOR I = 0 to 5
A[I] = A[I+2] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12  0 1 2 3 4 5  
Iteration Space Data Space

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]

= A[I+2]
A[I]
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Array Accesses in a loop

FOR I = 0 to 5
A[2*I] = A[2*I+1] + 1

0 1 2 3 4 5 6 7 8 9 10 11 12  0 1 2 3 4 5  
Iteration Space Data Space

= A[2*+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]

= A[2*I+1]
A[2*I]
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Recognizing FORALL Loops

● Find data dependences in loop
� For every pair of array acceses to the same array

If the first access has at least one dynamic instance (an iteration) in 
which it refers to a location in the array that the second access also 
refers to in at least one of the later dynamic instances (iterations).
Then there is a data dependence between the statements

� (Note that same array can refer to itself – output dependences)

● Definition
� Loop-carried dependence: 

dependence that crosses a loop boundary

● If there are no loop carried dependences Æ parallelizable
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Data Dependence Analysis 

● Example
FOR I = 0 to 5

A[I+1] = A[I] + 1

● Is there a loop-carried dependence between A[I+1] and A[I]
� Is there two distinct iterations iw and ir such that A[iw+1] is the same location 

as A[ir]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5     iw ≠ ir iw+ 1 =  ir

● Is there a dependence between A[I+1] and A[I+1]
� Is there two distinct iterations i1 and i2 such that A[i1+1] is the same location 

as A[i2+1]
� ∃ integers i1, i2 0 ≤ i1, i2 ≤ 5     i1 ≠ i2 i1+ 1 = i2 +1 
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Integer Programming

● Formulation
�  ∃ an integer vector i̅ such that Â i̅ ≤ b̅ where

Â is an integer matrix and b̅ is an integer vector

● Our problem formulation for A[i] and A[i+1]
� ∃ integers iw, ir 0 ≤ iw, ir ≤ 5  iw ≠ ir iw+ 1 =  ir
� iw ≠ ir is not an affine function 

– divide into 2 problems
– Problem 1 with iw < ir and problem 2 with ir < iw
– If either problem has a solution Æ there exists a dependence

� How about iw+ 1 =  ir
– Add two inequalities to single problem

iw+ 1 ≤ ir, and ir ≤ iw+ 1
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Integer Programming Formulation

● Problem 1
0 ≤ iw
iw ≤ 5
0 ≤ ir
ir ≤ 5
iw < ir
iw+ 1 ≤ ir
ir ≤ iw+ 1
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Integer Programming Formulation

● Problem 1
0 ≤ iw Æ -iw ≤ 0
iw ≤ 5 Æ iw ≤ 5
0 ≤ ir Æ -ir ≤ 0
ir ≤ 5 Æ ir ≤ 5
iw < ir Æ iw - ir ≤ -1
iw+ 1 ≤ ir Æ iw - ir ≤ -1
ir ≤ iw+ 1 Æ -iw + ir ≤ 1
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Integer Programming Formulation

● Problem 1
0 ≤ iw Æ -iw ≤ 0 -1 0 0
iw ≤ 5 Æ iw ≤ 5 1 0 5
0 ≤ ir Æ -ir ≤ 0 0 -1 0
ir ≤ 5 Æ ir ≤ 5 0 1 5
iw < ir Æ iw - ir ≤ -1 1 -1 -1
iw+ 1 ≤ ir Æ iw - ir ≤ -1 1 -1 -1
ir ≤ iw+ 1 Æ -iw + ir ≤ 1 -1 1 1

● and problem 2 with ir < iw

Â b̅
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Generalization

● An affine loop nest
FOR i1 = fl1(c1…ck) to Iu1(c1…ck)
FOR i2 = fl2(i1,c1…ck) to Iu2(i1,c1…ck)

……
FOR in = fln(i1…in-1,c1…ck) to Iun(i1…in-1,c1…ck)

A[fa1(i1…in,c1…ck), fa2(i1…in,c1…ck),…,fam(i1…in,c1…ck)]

● Solve 2*n problems of the form
– i1 = j1, i2 = j2,…… in-1 = jn-1, in < jn
– i1 = j1, i2 = j2,…… in-1 = jn-1, jn < in
– i1 = j1, i2 = j2,…… in-1 < jn-1
– i1 = j1, i2 = j2,…… jn-1 < in-1

…………………
– i1 = j1, i2 < j2
– i1 = j1, j2 < i2
– i1 < j1
– j1 < i1



30 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Multi-Dimensional Dependence

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

J

I
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Multi-Dimensional Dependence

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I, J-1] + 1

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I+1, J] + 1

J

I

J

I
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What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
B[I] = B[I-1] + 1

J

I

J

I
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What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
A[I] = A[I-1] + 1

J

I

J

I
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What is the Dependence?

FOR I = 1 to n
FOR J = 1 to n
A[I, J] = A[I-1, J+1] + 1

FOR I = 1 to n
FOR J = 1 to n
B[I] = B[I-1] + 1

J

I

J

I
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Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation
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Increasing Parallelization Opportunities

● Scalar Privatization
● Reduction Recognition
● Induction Variable Identification
● Array Privatization
● Interprocedural Parallelization
● Loop Transformations
● Granularity of Parallelism
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Scalar Privatization

● Example
FOR i = 1 to n

X = A[i] * 3;
B[i] = X;

● Is there a loop carried dependence?
● What is the type of dependence?
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Privatization 

● Analysis:
� Any anti- and output- loop-carried dependences 

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];
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Privatization 

● Need a final assignment to maintain the correct value after the 
loop nest

● Eliminate by assigning in local context
FOR i = 1 to n

integer Xtmp;
Xtmp = A[i] * 3;
B[i] = Xtmp;
if(i == n) X = Xtmp

● Eliminate by expanding into an array
FOR i = 1 to n

Xtmp[i] = A[i] * 3;
B[i] = Xtmp[i];

X = Xtmp[n];
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Another Example

● How about loop-carried true dependences?
● Example

FOR i = 1 to n
X = X + A[i];

● Is this loop parallelizable? 
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Reduction Recognition

● Reduction Analysis:
� Only associative operations
� The result is never used within the loop

● Transformation
Integer Xtmp[NUMPROC];
Barrier();
FOR i = myPid*Iters to MIN((myPid+1)*Iters, n)

Xtmp[myPid] = Xtmp[myPid] + A[i];
Barrier();
If(myPid == 0) {

FOR p = 0 to NUMPROC-1
X = X + Xtmp[p];

…
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Induction Variables

● Example
FOR i = 0 to N

A[i] = 2^i;
● After strength reduction

t = 1
FOR i = 0 to N

A[i] = t;
t = t*2;

● What happened to loop carried dependences?
● Need to do opposite of this!

� Perform induction variable analysis
� Rewrite IVs as a function of the loop variable
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Array Privatization

● Similar to scalar privatization

● However, analysis is more complex
� Array Data Dependence Analysis:

Checks if two iterations access the same location
� Array Data Flow Analysis:

Checks if two iterations access the same value

● Transformations
� Similar to scalar privatization 
� Private copy for each processor or expand with an additional 

dimension 
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Interprocedural Parallelization

● Function calls will make a loop unparallelizatble
� Reduction of available parallelism
� A lot of inner-loop parallelism

● Solutions
� Interprocedural Analysis
� Inlining
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Interprocedural Parallelization

● Issues
� Same function reused many times
� Analyze a function on each trace Æ Possibly exponential
� Analyze a function once Æ unrealizable path problem

● Interprocedural Analysis
� Need to update all the analysis
� Complex analysis
� Can be expensive

● Inlining
� Works with existing analysis
� Large code bloat Æ can be very expensive 
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● A loop may not be parallel as is
● Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

Loop Transformations
J

I
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● A loop may not be parallel as is
● Example

FOR i = 1 to N-1
FOR j = 1 to N-1
A[i,j] = A[i,j-1] + A[i-1,j];

● After loop Skewing
FOR i = 1 to 2*N-3

FORPAR j = max(1,i-N+2) to min(i, N-1)
A[i-j+1,j] = A[i-j+1,j-1] + A[i-j,j];

Loop Transformations
J

I

J

I
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Granularity of Parallelism

● Example
FOR i = 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● Gets transformed into
FOR i = 1 to N-1

Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

A[i,j] = A[i,j] + A[i-1,j]; 
Barrier();

● Inner loop parallelism can be expensive
� Startup and teardown overhead of parallel regions 
� Lot of synchronization
� Can even lead to slowdowns

J

I
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Granularity of Parallelism

● Inner loop parallelism can be expensive

● Solutions
� Don’t parallelize if the amount of work within the loop is 

too small
or
� Transform into outer-loop parallelism
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Outer Loop Parallelism

● Example
FOR i = 1 to N-1

FOR j = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● After Loop Transpose
FOR j = 1 to N-1

FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

● Get mapped into
Barrier();
FOR j = 1+ myPid*Iters to MIN((myPid+1)*Iters, n-1)

FOR i = 1 to N-1
A[i,j] = A[i,j] + A[i-1,j];

Barrier();

J

I

I

J
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Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation
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Generating Transformed Loop Bounds

for i = 1 to n do
X[i] =...
for j = 1 to i - 1 do 

... = X[j]

● Assume we want to parallelize 
the i loop

● What are the loop bounds?

● Use Projections of the 
Iteration Space
� Fourier-Motzkin Elimination 

Algorithm

j

i

(p, i, j)
1 ≤ i ≤ n

1 ≤ j ≤ i-1
i = p
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Space of Iterations

(p, i, j)
1 ≤ i ≤ n

1 ≤ j ≤ i-1
i = p

p

i
j

for p = 2 to n do
i = p
for j = 1 to i - 1 do 
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i = p

for p = 2 to n do

for j = 1 to i - 1 do

p

i
j

Projections
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Projections

i = p

for p = 2 to n do

for j = 1 to i - 1 do

p = my_pid()
if p >= 2 and p <= n then

i = p
for j = 1 to i - 1 do 
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Fourier Motzkin Elimination

1 ≤ i ≤ n
1 ≤ j ≤ i-1
i = p

● Project i Æ j Æ p

● Find the bounds of i
1 ≤ i

j+1≤ i
p ≤ i

i ≤ n
i ≤ p

i: max(1, j+1, p) to min(n, p)
i: p

● Eliminate i
1 ≤ n
j+1≤ n
p ≤ n

1 ≤ p
j+1≤ p
p ≤ p

1 ≤ j
● Eliminate redundant 

p ≤ n
1 ≤ p
j+1≤ p
1 ≤ j

● Continue onto finding bounds of j 
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Fourier Motzkin Elimination

p ≤ n
1 ≤ p
j+1≤ p
1 ≤ j

● Find the bounds of j
1 ≤ j

j≤ p -1
j: 1 to p – 1

● Eliminate j
1 ≤ p – 1
p ≤ n
1 ≤ p

● Eliminate redundant
2 ≤ p
p≤ n

● Find the bounds of p
2 ≤ p

p≤ n
p: 2 to n

p = my_pid()
if p >= 2 and p <= n then

for j = 1 to p - 1 do
i = p
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Outline

● Parallel Execution
● Parallelizing Compilers
● Dependence Analysis
● Increasing Parallelization Opportunities
● Generation of Parallel Loops
● Communication Code Generation
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Communication Code Generation

● Cache Coherent Shared Memory Machine
� Generate code for the parallel loop nest

● No Cache Coherent Shared Memory 
or Distributed Memory Machines
� Generate code for the parallel loop nest
� Identify communication
� Generate communication code



60 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Identify Communication

● Location Centric
� Which locations written by processor 1 is used by 

processor 2?
� Multiple writes to the same location, which one is used?
� Data Dependence Analysis

● Value Centric
� Who did the last write on the location read?

– Same processor Æ just read the local copy
– Different processor Æ get the value from the writer
– No one Æ Get the value from the original array
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● Input: Read access and 
write access(es)

for i = 1 to n do
for j = 1 to n do 
A[j] = …
… = X[j-1]

● Output: a function mapping
each read iteration to a write
creating that value

Last Write Trees (LWT)

j

i
Location Centric DependencesValue Centric Dependences

iw ir=

jw jr 1–=

T

F

1      j r<

⊥
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The Combined Space

computation decomposition for:

precv

irecv

jrecv

psend

isend

the receive iterations……… 1 ≤ irecv ≤ n
0 ≤ jrecv ≤ irecv -1

the last-write relation…………… isend = irecv

receive iterations…………. Precv = irecv

send iterations…………….. Psend = isend

Non-local communication……... Precv ≠ Psend
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Communication Space

jrecv

isend

psend

irecv

precv

for i = 1 to n do
for j = 1 to n do 
A[j] = …
… = X[j-1]

1 ≤ irecv ≤ n
0 ≤ jrecv ≤ irecv -1

isend = irecv

Precv = irecv

Psend = isend

Precv ≠ Psend
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Communication Loop Nests

Send Loop Nest
for precv = 2 to n do

irecv = precv
for jrecv = 1 to irecv - 1 do

psend = jrecv
isend = psend
receive X[jrecv] from 

iteration isend in
processor psend

for psend = 1 to n - 1 do
isend = psend
for precv = isend + 1 to n do

irecv = precv
jrecv = isend
send X[isend] to

iteration (irecv, jrecv) in
processor precv

irecv

jrecv

psend

precv

isend

Receive Loop Nest

irecv

jrecv

psend

precv

isend
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Merging Loops

Computation Send Recv

It
e r

at
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n s
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Merging Loop Nests 

if p == 1 then
X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
if p >= 2 and p <= n - 1 then

X[p] =...
for pr = p + 1 to n do

send X[p] to iteration (pr, p) in processor pr
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]

if p == n then
X[p] =...
for j = 1 to p - 1 do

receive X[j] from iteration (j) in processor j
... = X[j]
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Communication Optimizations

● Eliminating redundant communication
● Communication aggregation
● Multi-cast identification
● Local memory management
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Summary

● Automatic parallelization of loops with arrays
� Requires Data Dependence Analysis
� Iteration space & data space abstraction
� An integer programming problem

● Many optimizations that’ll increase parallelism

● Transforming loop nests and communication code generation
� Fourier-Motzkin Elimination provides a nice framework


