
Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 12

StreamIt Parallelizing Compiler

2 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Common Machine Language

● Represent common properties of architectures
Necessary for performance

● Abstract away differences in architectures
Necessary for portability

● Cannot be too complex
Must keep in mind the typical programmer

● C and Fortran were the common machine languages for
uniprocessors

Imperative languages are not the correct abstraction for
parallel architectures.

● What is the correct abstraction for parallel multicore
machines?

3 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Common Machine Language for Multicores

● Current offerings:
OpenMP
MPI
High Performance Fortran

● Explicit parallel constructs grafted onto imperative language
● Language features obscured:

Composability
Malleability
Debugging

● Huge additional burden on programmer:
Introducing parallelism
Correctness of parallelism
Optimizing parallelism

4 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Explicit Parallelism

● Programmer controls details of parallelism!
● Granularity decisions:

if too small, lots of synchronization and thread creation
if too large, bad locality

● Load balancing decisions
Create balanced parallel sections (not data-parallel)

● Locality decisions
Sharing and communication structure

● Synchronization decisions
barriers, atomicity, critical sections, order, flushing

● For mass adoption, we need a better paradigm:
Where the parallelism is natural
Exposes the necessary information to the compiler

5 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Unburden the Programmer

● Move these decisions to compiler!
Granularity
Load Balancing
Locality
Synchronization

● Hard to do in traditional languages
Can a novel language help?

6 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● Regular and repeating computation
● Synchronous Data Flow
● Independent actors

with explicit communication
● Data items have short lifetimes

Benefits:
● Naturally parallel
● Expose dependencies to compiler
● Enable powerful transformations Adder

Speaker

AtoD

FMDemod

LPF1

Duplicate

RoundRobin

LPF2 LPF3

HPF1 HPF2 HPF3

Properties of Stream Programs

7 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Why we need New Languages?
● Static Schedule
● Three Types of Parallelism
● Exploiting Parallelism

8 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { }

pop=3
push=1

pop=2
…

A B C

9 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A }

pop=3
push=1

pop=2
…

A B C

10 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A }

pop=3
push=1

pop=2
…

A B C

11 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B }

pop=3
push=1

pop=2
…

pop=3
push=1

A B C

12 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B, A }

pop=3
push=1

pop=2
…

A B C

13 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

Steady-State Schedule

pop=3
push=1

pop=2
…

pop=3
push=1

A B C

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B, A, B }

14 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

of items in the buffers are the same before and the
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B, A, B, C }

pop=3
push=1

pop=2
…

pop=2
…

A B C

15 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Initialization Schedule

● When peek > pop, buffer cannot be empty after
firing a filter

● Buffers are not empty at the beginning/end of the
steady state schedule

● Need to fill the buffers before starting the steady
state execution

peek=4
pop=3
push=1

16 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Initialization Schedule

● When peek > pop, buffer cannot be empty after
firing a filter

● Buffers are not empty at the beginning/end of the
steady state schedule

● Need to fill the buffers before starting the steady
state execution

peek=4
pop=3
push=1

peek=4
pop=3
push=1

17 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Why we need New Languages?
● Static Schedule
● Three Types of Parallelism
● Exploiting Parallelism

18 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Types of Parallelism

Task Parallelism
Parallelism explicit in algorithm
Between filters without producer/consumer
relationship

Data Parallelism
Peel iterations of filter, place within
scatter/gather pair (fission)
parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized

Scatter

Gather

Task

19 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Types of Parallelism

Task Parallelism
Parallelism explicit in algorithm
Between filters without producer/consumer
relationship

Data Parallelism
Between iterations of a stateless filter
Place within scatter/gather pair (fission)
Can’t parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel

20 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Types of Parallelism

Traditionally:

Task Parallelism
Thread (fork/join) parallelism

Data Parallelism
Data parallel loop (forall)

Pipeline Parallelism
Usually exploited in hardware

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

21 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Outline

● Why we need New Languages?
● Static Schedule
● Three Types of Parallelism
● Exploiting Parallelism

22 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● Inherent task parallelism between two
processing pipelines

● Task Parallel Model:
Only parallelize explicit task
parallelism
Fork/join parallelism

● Execute this on a 2 core machine ~2x
speedup over single core

● What about 4, 16, 1024, … cores?

23 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Evaluation: Task Parallelism

Raw Microprocessor
16 inorder, single-issue cores with D$ and I$

16 memory banks, each bank with DMA
Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target!

24 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Baseline 2: Fine-Grained Data Parallelism

Adder

Splitter

Joiner

● Each of the filters in the example
are stateless

● Fine-grained Data Parallel Model:
Fiss each stateless filter N ways
(N is number of cores)
Remove scatter/gather if
possible

● We can introduce data parallelism
Example: 4 cores

● Each fission group occupies entire
machine

BandStopBandStopBandStopAdder
Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

25 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Evaluation: Fine-Grained Data Parallelism

0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!

26 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Baseline 3: Hardware Pipeline Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● The BandPass and BandStop
filters contain all the work

● Hardware Pipelining
Use a greedy algorithm to
fuse adjacent filters
Want # filters <= # cores

● Example: 8 Cores
● Resultant stream graph is

mapped to hardware
One filter per core

● What about 4, 16, 1024, cores?

27 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Baseline 3: Hardware Pipeline Parallelism

Adder

Splitter

Joiner

BandPass

Compress
Process
Expand

BandStop

BandPass

BandStop

● The BandPass and BandStop
filters contain all the work

● Hardware Pipelining
Use a greedy algorithm to
fuse adjacent filters
Want # filters <= # cores

● Example: 8 Cores
● Resultant stream graph is

mapped to hardware
One filter per core

● What about 4, 16, 1024, cores?
Performance dependent on
fusing to a load-balanced
stream graph

Compress
Process
Expand

28 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Evaluation: Hardware Pipeline Parallelism

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It

Task
Fine-Grained Data
Hardware Pipelining

Parallelism: Not matched to target!
Synchronization: Not matched to target!

29 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

The StreamIt Compiler

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture
11.2x mean throughput speedup over single core

Coarsen
Granularity

Data
Parallelize

Software
Pipeline

30 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 1: Coarsen the Stream Graph

Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

● Before data-parallelism is exploited
● Fuse stateless pipelines as much

as possible without introducing
state

Don’t fuse stateless with stateful
Don’t fuse a peeking filter with
anything upstream

Peek Peek

PeekPeek

Adder

31 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 1: Coarsen the Stream Graph

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

● Before data-parallelism is exploited
● Fuse stateless pipelines as much

as possible without introducing
state

Don’t fuse stateless with stateful
Don’t fuse a peeking filter with
anything upstream

● Benefits:
Reduces global communication
and synchronization
Exposes inter-node optimization
opportunities

32 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores

33 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores

34 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

● Task-conscious data parallelization
Preserve task parallelism

● Benefits:
Reduces global communication
and synchronization

Data Parallelize for 4 cores

35 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Evaluation: Coarse-Grained Data Parallelism

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT
Filte

rba
nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task
Fine-Grained Data
Hardware Pipelining
Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!

36 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Simplified Vocoder

RectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

Joiner

PolarRect

66

20

2

1

1

1

2

1

1

1

20 Data Parallel

Data Parallel

Target a 4 core machine

Data Parallel, but too little work!

37 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Data Parallelize

RectPolarRectPolarRectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

RectPolar

Splitter

Joiner

RectPolarRectPolarRectPolarPolarRect

Splitter

Joiner

Joiner

66

20

2

1

1

1

2

1

1

1

20

5

5

Target a 4 core machine

38 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Data + Task Parallel Execution

Time

Cores

21

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

39 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

We Can Do Better!

Time

Cores

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

16

40 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 3: Coarse-Grained Software Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New
Steady

State

● New steady-state is free of
dependencies

● Schedule new steady-state using
a greedy partitioning

41 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:

42 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It

Task Fine-Grained Data
Hardware Pipelining Coarse-Grained Task + Data
Coarse-Grained Task + Data + Software Pipeline

Evaluation: Coarse-Grained
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!

43 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Summary

● Robust speedups across varied benchmark suite

Application
Dependent

Application
Dependent

Hardware
Pipelining

Low

Good

Coarse-Grained
Task + Data

High

Good

Fine-
Grained

Data

Lowest
Application
Dependent

Synchronization

Best
Application
Dependent

Parallelism

Coarse-Grained Task +
Data + Software

Pipeline
Task

● Streaming model naturally exposes task, data, and pipeline
parallelism

● This parallelism must be exploited at the correct granularity and
combined correctly

