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Common Machine Language

● Represent common properties of architectures
Necessary for performance

● Abstract away differences in architectures
Necessary for portability

● Cannot be too complex
Must keep in mind the typical programmer

● C and Fortran were the common machine languages for 
uniprocessors

Imperative languages are not the correct abstraction for 
parallel architectures.

● What is the correct abstraction for parallel multicore 
machines?
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Common Machine Language for Multicores

● Current offerings:
OpenMP
MPI
High Performance Fortran  

● Explicit parallel constructs grafted onto imperative language
● Language features obscured:

Composability
Malleability 
Debugging

● Huge additional burden on programmer:
Introducing parallelism
Correctness of parallelism
Optimizing parallelism
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Explicit Parallelism

● Programmer controls details of parallelism!
● Granularity decisions:

if too small, lots of synchronization and thread creation 
if too large, bad locality

● Load balancing decisions
Create balanced parallel sections (not data-parallel)

● Locality decisions
Sharing and communication structure

● Synchronization decisions
barriers, atomicity, critical sections, order, flushing

● For mass adoption, we need a better paradigm:
Where the parallelism is natural
Exposes the necessary information to the compiler
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Unburden the Programmer

● Move these decisions to compiler!
Granularity
Load Balancing
Locality
Synchronization

● Hard to do in traditional languages
Can a novel language help?



6 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

● Regular and repeating computation
● Synchronous Data Flow
● Independent actors 

with explicit communication
● Data items have short lifetimes

Benefits:
● Naturally parallel
● Expose dependencies to compiler
● Enable powerful transformations Adder

Speaker

AtoD

FMDemod

LPF1

Duplicate

RoundRobin

LPF2 LPF3

HPF1 HPF2 HPF3

Properties of Stream Programs
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Outline

● Why we need New Languages?
● Static Schedule 
● Three Types of Parallelism
● Exploiting Parallelism
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…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

# of items in the buffers are the same before and the 
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { }

pop=3
push=1

pop=2
…

A B C
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Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

# of items in the buffers are the same before and the 
after executing the schedule
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● Schedule = { A, A }
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A B C
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● All data pop/push rates are constant
● Can find a Steady-State Schedule

# of items in the buffers are the same before and the 
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B, A, B }
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…
push=2

Steady-State Schedule

● All data pop/push rates are constant
● Can find a Steady-State Schedule

# of items in the buffers are the same before and the 
after executing the schedule
There exist a unique minimum steady state schedule

● Schedule = { A, A, B, A, B, C }

pop=3
push=1

pop=2
…

pop=2
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A B C
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Initialization Schedule

● When peek > pop, buffer cannot be empty after 
firing a filter 

● Buffers are not empty at the beginning/end of the 
steady state schedule

● Need to fill the buffers before starting the steady 
state execution 

peek=4
pop=3
push=1
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Outline

● Why we need New Languages?
● Static Schedule 
● Three Types of Parallelism
● Exploiting Parallelism
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Types of Parallelism

Task Parallelism
Parallelism explicit in algorithm
Between filters without producer/consumer 
relationship

Data Parallelism
Peel iterations of filter, place within 
scatter/gather pair (fission)
parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized

Scatter

Gather

Task
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Types of Parallelism

Task Parallelism
Parallelism explicit in algorithm
Between filters without producer/consumer 
relationship

Data Parallelism
Between iterations of a stateless filter 
Place within scatter/gather pair (fission)
Can’t parallelize filters with state

Pipeline Parallelism
Between producers and consumers
Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel
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Types of Parallelism

Traditionally:

Task Parallelism
Thread (fork/join) parallelism

Data Parallelism
Data parallel loop (forall)

Pipeline Parallelism
Usually exploited in hardware

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data
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Outline

● Why we need New Languages?
● Static Schedule 
● Three Types of Parallelism
● Exploiting Parallelism
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Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● Inherent task parallelism between two 
processing pipelines

● Task Parallel Model:
Only parallelize explicit task 
parallelism 
Fork/join parallelism

● Execute this on a 2 core machine ~2x 
speedup over single core

● What about 4, 16, 1024, … cores?
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Evaluation: Task Parallelism

Raw Microprocessor
16 inorder, single-issue cores with D$ and I$

16 memory banks, each bank with DMA
Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target! 
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Baseline 2: Fine-Grained Data Parallelism

Adder

Splitter

Joiner

● Each of the filters in the example 
are stateless

● Fine-grained Data Parallel Model:
Fiss each stateless filter N ways 
(N is number of cores)
Remove scatter/gather if 
possible

● We can introduce data parallelism
Example: 4 cores

● Each fission group occupies entire 
machine
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Evaluation: Fine-Grained Data Parallelism
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Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!
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Baseline 3: Hardware Pipeline Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

● The BandPass and BandStop
filters contain all the work

● Hardware Pipelining
Use a greedy algorithm to 
fuse adjacent filters
Want # filters <= # cores  

● Example: 8 Cores
● Resultant stream graph is 

mapped to hardware
One filter per core

● What about 4, 16, 1024, cores? 
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Baseline 3: Hardware Pipeline Parallelism

Adder

Splitter

Joiner

BandPass

Compress
Process
Expand

BandStop

BandPass

BandStop

● The BandPass and BandStop
filters contain all the work

● Hardware Pipelining
Use a greedy algorithm to 
fuse adjacent filters
Want # filters <= # cores  

● Example: 8 Cores
● Resultant stream graph is 

mapped to hardware
One filter per core

● What about 4, 16, 1024, cores?
Performance dependent on 
fusing to a load-balanced 
stream graph

Compress
Process
Expand
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Evaluation: Hardware Pipeline Parallelism
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Task
Fine-Grained Data
Hardware Pipelining

Parallelism: Not matched to target!
Synchronization: Not matched to target!
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The StreamIt Compiler

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture
11.2x mean throughput speedup over single core 

Coarsen 
Granularity

Data 
Parallelize

Software 
Pipeline 
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Phase 1: Coarsen the Stream Graph

Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

● Before data-parallelism is exploited
● Fuse stateless pipelines as much 

as possible without introducing 
state

Don’t fuse stateless with stateful
Don’t fuse a peeking filter with 
anything upstream

Peek Peek

PeekPeek

Adder



31 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

Phase 1: Coarsen the Stream Graph

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

● Before data-parallelism is exploited
● Fuse stateless pipelines as much 

as possible without introducing 
state

Don’t fuse stateless with stateful
Don’t fuse a peeking filter with 
anything upstream

● Benefits:
Reduces global communication 
and synchronization
Exposes inter-node optimization 
opportunities
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Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores
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Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores
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BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

● Task-conscious data parallelization
Preserve task parallelism

● Benefits:
Reduces global communication 
and synchronization

Data Parallelize for 4 cores
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Evaluation: Coarse-Grained Data Parallelism
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Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!
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Simplified Vocoder
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20 Data Parallel

Data Parallel

Target a 4 core machine

Data Parallel, but too little work!
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Data Parallelize
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Target a 4 core machine
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Data + Task Parallel Execution

Time
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We Can Do Better!

Time
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Target 4 core machine
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Phase 3: Coarse-Grained Software Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New 
Steady

State

● New steady-state is free of 
dependencies

● Schedule new steady-state using 
a greedy partitioning
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Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:
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Task Fine-Grained Data
Hardware Pipelining Coarse-Grained Task + Data
Coarse-Grained Task + Data + Software Pipeline

Evaluation: Coarse-Grained 
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!
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Summary

● Robust speedups across varied benchmark suite

Application
Dependent

Application
Dependent

Hardware
Pipelining

Low

Good

Coarse-Grained 
Task + Data

High

Good

Fine-
Grained 

Data

Lowest
Application
Dependent 

Synchronization

Best 
Application
Dependent

Parallelism

Coarse-Grained Task + 
Data + Software 

Pipeline
Task

● Streaming model naturally exposes task, data, and pipeline 
parallelism

● This parallelism must be exploited at the correct granularity and 
combined correctly


