
Prof. Alan Edelman, MIT. 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 13

Star-P

The Inside Story behind Interactive
Supercomputing's Star-P Platform for High
Performance Computing for MATLAB(r)

Alan Edelman
Massachusetts Institute of Technology

Professor of Applied Mathematics
Computer Science and AI Laboratories

Interactive Supercomputing
Chief Science Officer

2

3

Company

• Background:
– Started in 1995, Founded in 2004
– Parallel Computing Harder than most realize
– Technology: Star-P software platform supporting automatic

parallelization and interactive execution of desktop technical
applications on parallel servers

– Platform: Clients: MATLAB, MATHEMATICA, PYTHON
– Platform: Engines, your code, etc.

• Value:
– Modern Client/Server Parallel Computation
– OPEN PLATFORM
– Can plug in existing parallel and serial software seamlessly
– Years of experience

4

Client/Server Parallel Computing
The Client (a math lab) is the browser

Slide contains trademarks owned by private corporations. Use of logos or registered trademarks does not imply endorsement

Web vs traditional
• Bank/financial
• Email
• Travel
• Photos
• MIT Grades
• Your Parallel

Computing!

5

Star-P Functional Overview

6

Familiar Desktop Tools

7

Star-P Client

• Connects to server
• Redirects library calls
• Optimizes serial code

8

Star-P Interactive Engine

• Server resource management
• User & session management
• Workload management

9

Star-P Computation Engine

1. Data-Parallel Computations
2. Task-Parallel Computations
3. OpenConnect Library API Link

10

Data-Parallel Computations

• Global array
syntax

• Operations on
large distributed
data sets

• World-class
parallel libraries

11

12

ppeval syntax (parallel function)

Answer does not depend on distribution:
Parallel computers need shapes to
enter from all sides.

• a=rand(500,500,200*p);
• [u,s,v]=ppeval(‘svd’,a); % default svd on z-dim

• a=rand(500,500*p,200);
• [u,s,v]=ppeval(‘svd’,a); % default svd on z-dim

anyway

P1
P2
P3
P4

P1 P2 P3 P4

13

Task-Parallel Computations

• Multiple independent
calculations

• Simple, intuitive
w/Star-P’s abstraction

• Plug in popular
computation engines

14

Star-P OpenConnect Library API Link

• Leverage data-
and task-parallel
libraries, solvers

• Commercial and
open source

• Enable access
through desktop
VHLLs

15

Star-P OpenConnect Library API

• Leverage data-
and task-parallel
libraries, solvers

• Commercial and
open source

• Enable access
through desktop
VHLLs

16

Hardware Accelerators

• Embed compute-
intensive algorithms

• FPGAs, GPUs, etc.
• Library functions,

called from desktop
apps

17

Development Utilities

• Debugging,
profiling,
monitoring

• Built in, and
interfaces to
popular tools

• Interactively
explore and
optimize code

18

High-speed I/O

• Native parallel I/O
• Direct transfer

between disk and
server CPUs

• Eliminate
client/server data
transfer

• No need to manually
break up files

19

Classroom Homework

• The Buffon Needle Problem

function z=Buffon(a,b,l, trials)
r=rand(trials,3);
x=a*r(:,1)+l*cos(2*pi*r(:,3)); y=b*r(:,2)+l*sin(2*pi*r(:,3));
inside = (x >= 0) & (y>=0) & (x <= a) & (y <= b);
buffonpi=(2*l*(a+b) - l^2)/ (a*b*(1-sum(inside)/trials));

a
bBuffon(1,1,1.5,1000*p)

20

Classroom Experiment

• A data collector’s dream:
– 29 students, each code run in MPI and

three versions of Star-P. Some students
more skilled with MPI than others.

21

Classroom Experiment

• A data collector’s dream:
– 29 students, each code run in MPI and

three versions of Star-P. Some students
more skilled with MPI than others.

Mean mpi Time

Star-P 2.1 (March 2006) Star-P 2.3 (May 2006) Star-P internal

22

Productivity Study – Kepner diagram

Star-P 2.1
Star-P 2.3
Star-P internal

MPI Typical

MPI Best

Development Time

P
er

fo
rm

an
ce

small large
bad

best

23

The silly (worse than embarassing) pi example
(followed by the good one)

Abstraction: Independent of number of processors
or processes!
Abstraction: Parameters automatically moved to
server!

>> n=8; k=1:n;
>> sum(ppeval('quad','4./(1+x.^2)', (k-1)/n, k/n))

Parallel Evaluate Pieces of pi:
∫4/(1+x2) dx on [0,1/8],[1/8,2/8],...,[7/8,1] and sum.

ans =
3.14159265358979

function thedigits = pidigits(d)
sum1 =0; sum2 = zeros(4);
A = eye(d+1,d+1); B = zeros(d+1,1);n = 1;
g = [1,4,5,6];
for m = g

if (m == 1),A(1) =0; end
for j = 0:d

B(j+1,1) = 8*j+m;
for i = j+1:d

A(i+1,j+1) = mod(A(i, j+1)*16, 8*j+m);
end

A(1:d +1, j+1) = A(1:d +1, j+1)/B(j+1,1);
end
for i = 1:d+1, f(i,n) = sum(A(i,:)); end
n = n+1; u = f-floor(f);A = eye(d+1,d+1);

end

for e = 0:d
for k = d+1:d+20

b= 16^(d-k)./(8*k+[1 4 5 6]);
sum1 = sum1 + (b-floor(b));

end
sum2(e+1,1:4) = sum1;

end

q = u + sum2; soln = 4*q(:,1)-2*q(:,2)-q(:,3)-q(:,4);
thedigits = floor(16*(soln - floor(soln)));

Compute millions of
hexadecimal digits of pi!

24

Wigner’s semicircle Law with four clients

Take Random Symmetric Matrix and
histogram the eigenvalues

Famous Noble Prize Winning Physicist
Computed histogram = semicircle

25

MATLAB

26

Mathematica

27

Python

28

R Client

29

Star-P Functional Overview

