6.189 IAP 2007

Lecture 15

Cilk

Dr. Bradley Kuszmaul, MIT. 6.189 IAP 2007 MIT

e

Design and Analysis of
Dynamic Multithreaded
Algorithms

Bradley C. Kuszmaul
MIT Computer Science and Artificial
Intelligence Laboratory

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 1

http://supertech.lcs.mit.edu/~cel

Shared-Memory Multiprocessor

Shared Network

 Symmetric multiprocessor (SMP)

* Cache-coherent nonuniform memory
architecture (CC-NUMA)

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 2

Cilk

A C language for dynamic multithreading
with a provably good runtime system.

Platforms Applications

Sun UltraSPARC Enterprise - VITLS §hell asserpbly
» SGI Origin 2000 . graphlcs.render.mg
- Compag/Digital Alphaserver - n-body simulation

. : >% % Socrates and
Intel Pentium SMP’s Cilkchess

Cilk automatically manages low-level
aspects of parallel execution, including
protocols, load balancing, and scheduling.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 3

Fibonacci

int fib (int n) g
if (n<2) return (n);

elset{ Cilk code
1nt X,Y, : cilk int fib (dnt n) {
X = E}E(n-%): if (n<2) return (n);
y = fi gn‘ %: else {
return (x+v),; int x,y;
3 x = gpawn fib(n-1);
¥ y = spawn fib(n-2);
.. sync:
C elision , rg:lurn (x+y);
}

Cilk 1s a faithful extension of C. A Cilk program’s
serial elision is always a legal implementation of
Cilk semantics. Cilk provides no new data types.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 4

Dynamic Multithreading

cilk int fib (int n) { The computation

if (n<2) return (n);

2lsen{ recurn (n dag Ml’lfOldS
int x,y; dynamically.
x = spawn fib(n-1);

y = spawn fib(n-2);

Sync;
return (x+y);
}

¥

— b
“Processor [
oblivious.” (j ﬂ

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 5

Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from

child to parent. (Cilk also supports malloc.)
A B C D E

TR II. l
2 |

Cilk’s cactus stack supports several views in parallel

©2001—4byCh rles E. Lei and Bradley C. Kuszmaul 6

Views of stack

Advanced Features

e Returned values can be incorporated into the parent
frame using a delayed internal function called an
inlet:

/int Y;
inlet void foo (int x) {
if (x> y)y = x;

spawn foo(bar(z));

e Within an inlet, the abort keyword causes all
other children of the parent frame to be terminated.

o The SYNCHED pseudovariable tests whether a
sync would succeed.

e A Cilk library provides mutex locks for atomicity.

© 2001-4 by Charles E. Leiserson and Bradley C. Kuszmaul 7

Debugging Support

The Nondeterminator debugging tool
detects and localizes data-race bugs.

“Abelian”
Cilk program

Information
localizing a
data race.

Input data set

A data race occurs whenever a thread modifies a
location and another thread, holding no locks in
common, accesses the location simultaneously.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 8

Outline

Theory and
Praciaggess
Lepsewith Algorithms
Work Stealing

*Opinion &
Conclusion

Algorithmic Complexity
T, = executiy ¢msOINER processors

T

/Q\

»

/8

?

Qb

I

Algorithmic Complexity
T, = executiy ¢msOINER processors
Q T, = work

/@\

»

/8

?

Ob

I

Algorithmic Complexity
T, = executiy ¢msOINER processors

/g\ T, = work

T, = eritical path
A
f Q/G\ AN

?
N /
é\,

©

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 12

Algorithmic Complexity
T, = executiy ¢msOINER processors
Q T, = work

»\ T, = eritical path
N -

/@\ /@\ Lower Bounds
oT,2T/P

9 T,>T,

?
—Y
6\

— O

o

Algorithmic Complexity
T, = executiy ¢msOINER processors
Q T, = work

»\ T, = eritical path
N -

/@\ Lower Bounds
? q) @% .TP 2 TI/P
oT,2T,

)
%\9 /T, = speedup
' T/T, = parallelism

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 14

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution Q

with 7, < T/P + T, . »\
? @%

adley C. Kuszmaul 15

Qb

f%

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution ?

with 7,<T /P + T, . P=3

Proof. At each time

step, ... /‘\
T Y

adley C. Kuszmaul 16

oo

f%

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution

®
with 7,<T,/P + T, . /i\P: 3
e NP
are ready, ... T ? ? ‘))
X
1

©

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 17

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution ?

with 7, <T/P + T, . P=3
Proof. At each time /‘\

step, if at least P tasks /‘\ /‘\
are ready, execute P é

of them. ? ? ?

X /
b4 i
6\ |

©

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 18

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution ?

with 7, <7 /P + T, . P=3
Proof. At each time /‘\

step, if at least P tasks /‘\ /‘\
are ready, execute P

of them. If fewer than ? ? @ ?

P tasks are ready, ... 6\% /‘ Q /

[

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 19

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution ?

with 7, <7 /P + T, . P=3
Proof. At each time /‘\

step, if at least P tasks /‘\ /‘\
are ready, execute P é

of them. If fewer than ? ? ?
P tasks are ready, 6\(;) /‘
execute all of them.

[

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 20

Greedy Scheduling

Theorem [Graham & Brent]:
There exists an execution ?

with 7, <7 /P + T, . P=3
Proof. At each time /‘\

step, if at least P tasks /‘\ /‘\
are ready, execute P é

of them. If fewer than ? ? ?
P tasks are ready, 6\(;) /‘
execute all of them.

Corollary: Linear speed- @\

up when P<T/T, . (]

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 21

Cilk Performance

Cilk’s “work-stealing” scheduler achieves
o1, =T,/P+ O(T,) expected time (provably);

o1, =T,/P+ T, time (empirically).

Near-pertect linear speedup it P = 7'/T..

Instrumentation 1n Cilk provides accurate
measures of 7, and 7, to the user.

The average cost of a spawn in Cilk-5 1s
only 2—6 times the cost of an ordinary C
function call, depending on the platform.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 22

Outline

*Theory and

Prag Chess

Lepsewith Algorithms
*Work Stealing

*Opinion &
Conclusion

Cilk Chess Programs

Socrates placed 3rd in the 1994 International
Computer Chess Championship running on NCSA’s
512-node Connection Machine CM3.

Socrates 2.0 took 2nd place in the 1995 World

Computer Chess Championship running on Sandia
National Labs’ 1824-node Intel Paragon.

Cilkchess placed st in the 1996 Dutch Open
running on a l2-processor Sun Enterprise 5000. It

placed 2nd 1in 1997 and 1998 running on Boston
University’s 64-processor SGI Origin 2000.

Cilkchess tied for 3rd in the 1999 WCCC running on
NASA’s 256-node SGI Origin 2000.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 24

Socrates Normalized Speedup

AT,=T/P+T,

0.01F

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 25

Socrates Speedup Paradox

Original program Proposed program
T, =65 seconds T",, =40 seconds
I,=T/P+T,

T, = 2048 seconds 1", = 1024 seconds
T =1 second T = 8 seconds
T,,=2048/32 + 1 T,,=1024/32 + 8

= 65 seconds =40 seconds

T.,,=2048/512 + 1 T,=1024/512 + 8
= 5 seconds = 10 seconds

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 26

Outline

*Theory and
Pracirggess
Lepunwith Algorithms
*Work Stealing

*Opinion &
Conclusion

Matrix Multiplication

/CH C12 Cln\ rall a12 aln\ rbll b12 bln\
C21 C22 o C2n aZl a22 T a2n x bZl b22 b2n
\Cnl Cn2 o Cnn) \anl anZ T ann > \bnl bn2 T bnn >

C A B

/
n
Cii= Z aikbkj
k=1

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 28

Recursive Matrix Multiplication

Divide and conquer on n X n matrices.

Cll C12 All A12 Bll B12
— X
_ C21 C22) _ A21 A22) _ B21 B22)
AllBll A11B12 A12B21 A12B22
— +
\A21B11 A21B12/ \A22B21 A22B22/

8 multiplications of (n/2) X (n/2) matrices.
1 addition of n x n matrices.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 29

Matrix Multiplication in Cilk

%1%§ Mul%E][] *B,n)

oat T[n][n];

h base ccﬁelcf’zp(cg‘il:zl‘_zox ﬁatgieic /2) (Coar SCI
spawn Mult n
spawn Mult(C12.A11.B12.n/2); base cases
spawn Mult(C22,A21,B12,n/2); for efflClency,)
spawn Mult(C21,A21, 'B11 n/2)
spawn Mult(T11,A12, ‘B21 ,n/2);
spawn Mult(T12,A12, 'B22 n/2)
spawn Mult(T22,A22, 'B22 n/2)

spawn Mult(T21,A22,B21,n/2); C=C+T
Sync;

spawn Add(C : T : n) : cilk Add(C *T n)

Sync; { h base case & (partztwn matrices i
return; Spawn Add(C11,T11 n/2)

1 spawn Add(C12,T12 n/2)

i MG
spawn n/2);
C=ARB sgnc;

return,

& ZUUT—= UY CTHALICS L. L.CISCISUILL dIlU DIAUICTY CU. INUSZITIdUL O\

Analysis of Matrix Addition

Work: A (n)=4A,0n/2)+
(1)
Critical path: A_(n) =A(BW2)+ (1)
= (lgn)

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 31

Analysis of Matrix Multiplication

Work: M (n)=8 M (n/2)+ (n?)

= (7))
Critical path: M_(n)=M_(n/2)+ (Ign)
= (g’n)
; . Ml(n) 3152
Parallelism. M_(n) (n’/1g’n)

For 1000 £ 1000 matrices, parallelism 2 107.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 32

Stack Temporaries

cilk Mult% *B,n)

{ float T n]tn],
h base case & partition matrices i
spawn Mult(C11,A11,B11,n/2);
spawn Mult(C12,Al11, 'B12 n/2)
spawn Mult(C22,A21,312,n/2);
spawn Mult(C21,A21,B11,n/2);
spawn Mult(T11,A12, 'B21 n/2)
spawn Mult(T12,A12, 'B22 n/2)
spawn Mult(T22,A22, 'B22 n/2);
spawn Mult(T21,A22,321,n/2);
Sync;
spawn Add(C,T,n);
Sync;
return;

In modern hierarchical-memory microprocessors,
memory accesses are so expensive that minimizing
storage often yields higher performance.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 33

No-Temp Matrix Multiplication

cilk Mu1t2(*C,*A,*B,n)
{//C=C+ A * B
h base case & partition matrices i
spawn Mult2(C11,A11,B11,n/2);
spawn Mult2(C12,A11, 'B12 n/2)
spawn Mult2(C22,A21,BlZ,n/2);
spawn Mult2(C21,A21,B11,n/2);
SYNC;
spawn Mult2(C21,A22,B21,n/2);
spawn Mult2(C22,A22,B22,n/2);
spawn Mult2(C12,A12, 'B22 n/2)
Spawn Mult2(C11,A12, 'B21 n/2),

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 34

Analysis of No-Temp Multiply
Work: M (n)= (n')

Critical path: M _(n)=2 M _(n/2)+ (1)
= (n)

M, (n) 2
Moo(n) _ (n)

Parallelism:

For 1000 £ 1000 matrices, parallelism Y2 10°.
Faster 1n practice.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 35

Ordinary Matrix Multiplication

n
Cii= Z aikbkj
k=1

IDEA: Spawn n° inner Work: ()

products 1n parallel. Critical path: (lgn)

Compute each inner patn
product in parallel. Parallelism: (n’/lgn)

BUT, this algorithm exhibits
poor locality and does not
exploit the cache hierarchy
of modern microprocessors.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 36

Outline

*Theory and
Pracirggess
Lepsenwith Algorithms
*Work Stealing

*Opinion &
Conclusion

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

—

—
® ©

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 38

)

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

—

2) W)

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 39

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 40

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 41

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

-
L) 2)

When a processor runs out of
work, it steals a thread from the " 73 N D
top of a randoem victim’s deque. ’

© 20014 by @harles E. Leiserson and Bradley C. Kuszmaul 42

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

-
®» ® » ®

When a processor runs out of
work, it steals a thread from the " 73 N D
top of a randoem victim’s deque. ’

© 20014 by @harles E. Leiserson and Bradley C. Kuszmaul 43

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

2 B P @

When a processor runs out of
work, it steals a thread from the

top of a random victim's deque.

© 2001-4b

.'/..o>

and Bradley C. Kuszmaul 44

Cilk’s Work-Stealing Scheduler

Each processor maintains a weork deque
of ready threads, and it manipulates the
bottom of the deque like a stack.

—1
=
2) @ﬁl 2)

When a processor runs out of
work, it steals a thread from the " 73 N D
top of a randoem victim’s deque. ’

© 20014 by @harles E. Leiserson and Bradley C. Kuszmaul 45

Performance of Work-Stealing

Theorem: A work-stealing scheduler achieves
an expected running time of

T,<T/P+ O(T,)
on P processors.

Pseudoproof. A processor 1s either working or
stealing. The total time all processors spend
working 1s 7',. Each steal has a 1/P chance of

reducing the critical-path length by 1. Thus,
the expected number of steals 1s O(PT).

Since there are P processors, the expected
time 1s (T, + O(PT,))/P =T,/P + O(T)).

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 46

Outline

*Theory and
Pracirggess
Lepsenwith Algorithms
*Work Stealing

*Opinion &
Conclusion

Data Parallelism

© High level @ Conversion costs

© Intuitive @ Doesn’t scale down

© Scalesup @ Antithetical to caches
@ Two-source problem

@ Performance from
tuned libraries

C

Example: D 4 + B

A - B;

6 memory references, rather than 4. l

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 48

Message Passing

© Scales up @ Coarse grained

© No compiler @ Protocol intensive
support needed @ Difficult to debug

© Large inertia @ Two-source problem

© Runs anywhere @ Performance from
tuned libraries

Shared memory <— In-core
easier
harder ‘ . harder
v easier v

Distributed memory < Out-of-core

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 49

Conventional (Persistent)

Multithreading
© Scalesupand @ Clumsy
down @ No load balancing
© No compiler @ Coarse-grained
support needed control
© Large inertia @ Protocol intensive

© Evolutionary @ Difficult to debug

Parallelism for programs, not procedures. l

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 50

Dynamic Multithreading

© High-level linguistic support for fine-
grained control and data manipulation.

© Algorithmic programming model
based on work and critical path.

© Easy conversion from existing codes.
© Applications that scale up and down.

© Processor-oblivious machine model
that can be implemented 1n an adap-
tively parallel tashion.

@ Doesn’t support a “program model”
of parallelism.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 51

Current Research

* We are currently designing jCilk, a Java-based
language that fuses dynamic and persistent
multithreading 1n a single linguistic framework.

A key piece of algorithmic technology 1s an

adaptive task scheduler that guarantees fair and
efficient execution.

Hardware transactional memory appears to
simplify thread synchronization and improve

performance compared with locking.

* The Nondeterminator 3 will be the first parallel
data-race detector to guarantee both efficiency
and linear speed-up.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 52

Cllk Contrlbutors

-J‘!:-: i Lokl - |- e g -
.i 7— ; --J.-.e- = -
o !

Kunal « aﬁwal e —— Bradle%l(usrzmaul
Tﬁtanvﬁdn%AmOSﬁ ',; “f ‘Eharlesdﬁ, e&serson
B(‘)b@ ?iﬁtnofé ~- AL Pﬁﬂ*’il&leCkl
£ ma L-ee R Rl Rolg THEF .. wew”

i'll. 2

-1{ % ﬂwHa:ra Prokop 2

M

"F@ffg ﬁi “Kefth Randalh e 2l
5.“" Sy Fmemaﬁ’* '% + & BigSong . & =% z: ’;
Matteo %E. 3 # Andy Stark -
e “Michide bherr Valker Stcumpen
Chrls J Oerg Yuli Zhou

< 'l‘-‘;_r.___ plus manty MIT students and SourceForgers.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 53

World Wide Web

Cilk source code, programming examples,
documentation, technical papers, tutorials,
and up-to-date information can be found at:

http://supertech.csail.mit.edu/cilk l

Download C|LK Today!

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 54

http://supertech.lcs.mit.edu/cilk

Research Collaboration

Cilk is now being used at many universities for
teaching and research:

MIT, Carnegie-Mellon, Yale, Texas, Dartmouth,
Alabama, New Mexico, Tel Aviv, Singapore.

We need help in maintaining, porting, and enhancing
Cilk’s infrastructure, libraries, and application code
base. If you are interested, send email to:

cilk-support@supertech.lcs.mit.edu |

<P Warning: We are not organized!

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 55

mailto:cilk-support@supertech.lcs.mit.edu

Cilk-5 Benchmarks

Program Size T, T /T, T/T, T, T/T,

(00)

blockedmul 1024 29.9 0046 6783 1.05 429 7.0
notempmul 1024 20.7 0156 1904 1.05 39 7.6
strassen 1024 20.2 .5662 36 1.01 3.54 5.7
queens 22 150.0 .0015 96898 0.99 18.8 8.0
cilksort* 4.1M 54 0048 1125 1.21 0.9 6.0
knapsack 30 75.8 .0014 54143 1.03 9.5 8.0

lu 2048 155.8 .4161 374 1.02 20.3 7.7
cholesky* 1.02M 1427.0 3.4 420 1.25 208 6.9
heat 2M 62.3 .16 384 1.08 94 6.6
fft 1M 43 .002 2145 0.93 0.77 5.6

barnes-hut 65536 124.0 .15 853 1.02 16.5 7.5

All benchmarks were run on a Sun Enterprise 5000
SMP with 8 167-megahertz UltraSPARC processors.
All times are in seconds, repeatable to within 10%.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 56

Ease of Programming

Original C Cilk SPLASH-2

lines 1861 2019 2959
lines 0 158 1098
diff lines 0 463 3741
I'\/T, ‘ 7.5 7.2
T\/T, 1 1.024 1.099
TyTy 1 7.3 6.6

Barnes-Hut application for 64K particles
running on a 167-MHz Sun Enterprise 5000.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 57

ICFP Programming Contest

e An 8-person Cilk team won FIRST PRIZE in the
1998 Programming Contest sponsored by the
International Conference on Functional Programming.

e Our Cilk “Pousse” program was undefeated among
the 49 entries. (Half the entries were coded 1in C.)

e Parallelizing our program to run on 4 processors took
less than 1% of our effort, but it gave us more than a
3.5% performance advantage OVEer our competltors

e The ICFP Tournament Directors cited Cilk as
“the superior programming tool of choice
for discriminating hackers.”

For details, see:

http://supertech.lcs.mit.edu/~pousse

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 58

http://supertech.lcs.mit.edu/~pousse

Whither Functional
Programming?

We have had success using functional languages
to generate high-performance portable C codes.

e FF'TW: The Fastest Fourier Transform in the West
[Frigo-Johnson 1997]: 2-5£ vendor libraries.

* Divide-and-conquer strategy optimizes cache use.

* A special-purpose compiler written in Objective
CAML optimizes FFT dag for each recursive level.

e At runtime, FFTW measures the performance of
various execution strategies and then uses dynamic
programming to determine a good execution plan.

http://theory.lcs.mit.edu/~fftw l

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 59

http://theory.lcs.mit.edu/~fftw

Compiling Cilk

source-to-source /A makefile
translator | encapsulates
the process.

1
SOUrce

C compile

3
Cilk

C
binary

‘cilk2c translates
straight C code into
1dentical C postsource.

linking
loader

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 61

Cilk’s Compiler Strategy

The c11k2c compiler generates two
“clones” of each procedure:

* fast clone—serial, common-case code.
* slow clone—code with parallel

bookkeeping.

SLOW
* The fast clone 1s always spawned, saving live FAST
variables on Cilk’s work deque (shadow stack). FAST
* The slow clone is resumed if a thread is stolen, FAST
restoring variables from the shadow stack. FAST
* A check is made whenever a procedure returns FAST

to see 1f the resuming parent has been stolen.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 62

Compiling spawn (Fast Clone)

Cilk x = spawn fib(n-1); rame entry
source join
— citke I
frame—>en’fry_= 1; suspend | entry
rame->n = n; parent i
push(frame); J
C post- x = fib(n-1); } run child Cilk
source if (pop() == FATLURE)" deque
{ frame->x = x; resume
frame->join--; > parent
h clean up & return remotely
to scheduler i ¥

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 63

Compiling sync (Fast Clone)

Cilk _ SLLOW
source SYHGs FAST
_ FAST
- cilkc L FAST
FAST
C post- ; FAST
source

No synchronization overhead in the fast clone! l

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 64

{

Compiling the Slow Clone

void fib_slow(fib_frame *frame)

int n,x,

switch (¥rame—>entry) {

case 1: goto L1;
case 2: goto L2;
case 3: goto L3;

}

frame- >entry 1;
frame->n = n;
push(frame);
x = fib(n- 1)
if (pop() == FAILURE)
{ frame- >x = X;
frame- >301n——
h clean up & return
to scheduler i }

if (0) {
Ll--

= frame->n;

restore
program
counter

same
> as fast
clone

J

restore local
} variables

if resuming

- continue

frame

entry

join

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 65

Breakdown of Work Overhead

C
|] state saving

MIPS RIO000 frame allocation
teali tocol
UltraSPARC I B stealing protoco
Pentium Pro
Alpha 21164
| | | | | I |
0 1 0 5 ¢ ;

3 4
T/T,

Benchmark: £1b on one processor.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 66

Mergesorting

%ilk void Mergesort(int A[], int p, int r)

int q;
if % Pp<Tr)

q = (p+r)/2;

Spawn Mergesortg %)

spawn Mergesort(A,q+l,r);

Sync, ,
Merge(A,p,q,r); // linear time

5
3
T (n)=2T,(n72)+ Parallelism: W
(n)
T.(n) =T, (/g e~ (g n)
(n) (n)

— (n\ © 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 67

Parallel Merge

1 2 [
X - X[1/2] X[1/2]
Recurswe, Binary search I Recursive
merge merge
Y X[l/2] . X[1/2] m - [

Jj j+l 7

Tn)=T(n)+T,(1-)M+ (gn), where 1/4- -3/4
= (n)

T (n)=T3n4)+ (gn)
= (g’n)

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 68

Parallel Mergesort

T'(n)=2Tn?2)+ (n) Parallelism:

= (nlgn)
(nlg n) ,
T, (n)=T,n2)+ (lg°n) (lggn) = (n/lg’n)
= (g’n)

*Our implementation of this algorithm yields a
21% work overhead and achieves a 6 times
speedup on 8 processors (saturating the bus).

*Parallelism of (n/lg n) can be obtained at the
cost of increasing the work by a constant factor.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 69

Student Assignment

a N
Implement the fastest 1000 £ 1000

matrix-multiplication algorithm.
\\ y

* Winner: A variant of Strassen’s algorithm which
permuted the row-major input matrix into a bit-
interleaved order before the calculation.

e Losers: Half the groups had race bugs, because
they didn’t bother to run the Nondeterminator.

* Learners: Should have taught high-performance
C programming first. The students spent most of
their time optimizing the serial C code and little
of their time Cilkifying it.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 70

Caching Behavior
Cilk’s scheduler guarantees that
Q/P-Q,/P+0OMT,IB),
where O, 1s the total number of cache taults on
P processors, each with a cache of size M and

cache-line length B.

Divide-and-conquer “cache-oblivious” matrix

multiplication has B
Q,(n)=0(1 + n* NMB) ,
which 1s asymptotically optimal.

IDEA: Once a submatrix fits in cache, no
further cache misses on its submatrices.

© 20014 by Charles E. Leiserson and Bradley C. Kuszmaul 71

