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Predicting the Future is Always Risky

● "I think there is a world market for 
maybe five computers.“

– Thomas Watson, chairman of IBM, 1949

● "There is no reason in the world 
anyone would want a computer in their 
home. No reason.”

– Ken Olsen, Chairman, DEC, 1977

● "640K of RAM ought to be enough for 
anybody.”

– Bill Gates, 1981 
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Future = Evolution + Revolution

● Evolution
Relatively easy to predict
Extrapolate the trends

● Revolution 
A completely new technology or solution
Hard to Predict

● Paradigm Shifts can occur in both
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Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries 
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Evolution

● Look at the trends
Moore’s Law
Power Consumption
Wire Delay
Hardware Complexity
Parallelizing Compilers
Program Design Methodologies 

● Design Drivers are different in 
Different Generations
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The March to Multicore:
Uniprocessor Performance (SPECint)
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Power Consumption (watts)
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Power Efficiency (watts/spec)
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Range of a Wire in One Clock Cycle

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26
0.28

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

P
ro

ce
ss

 (m
ic

ro
ns

)

700 MHz

1.25 GHz

2.1 GHz

6 GHz
10 GHz

13.5 GHz

• 400 mm2 Die
• From the SIA Roadmap



11 6.189 IAP 2007 MITProf. Saman Amarasinghe, MIT.

DRAM Access Latency
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Improvement in Automatic Parallelization
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Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries 
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Novel Opportunities in Multicores

● Don’t have to contend with uniprocessors
The era of Moore’s Law induced performance gains is over!
Parallel programming will be required by the masses
– not just a few supercomputer super-users
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Novel Opportunities in Multicores

● Don’t have to contend with uniprocessors
The era of Moore’s Law induced performance gains is over!
Parallel programming will be required by the masses
– not just a few supercomputer super-users

● Not your same old multiprocessor problem
How does going from Multiprocessors to Multicores impact 
programs?
What changed?
Where is the Impact?
– Communication Bandwidth
– Communication Latency
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Communication Bandwidth

● How much data can be communicated 
between two cores?

● What changed?
Number of Wires
– IO is the true bottleneck
– On-chip wire density is very high
Clock rate
– IO is slower than on-chip
Multiplexing 
– No sharing of pins

● Impact on programming model?
Massive data exchange is possible
Data movement is not the bottleneck 

processor affinity not that important

32 Giga bits/sec ~300 Tera bits/sec

10,000X
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Communication Latency

● How long does it take for a round trip 
communication?

● What changed?
Length of wire
– Very short wires are faster

Pipeline stages
– No multiplexing 
– On-chip is much closer
– Bypass and Speculation?

● Impact on programming model?
Ultra-fast synchronization
Can run real-time apps 
on multiple cores 

50X

~200 Cycles ~4 cycles
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Past, Present and the Future?
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Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries 
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The OO Revolution

● Object Oriented revolution did not come out of a vacuum

● Hundreds of small experimental languages 

● Rely on lessons learned from lesser-known languages
C++ grew out of C, Simula, and other languages
Java grew out of C++, Eiffel, SmallTalk, Objective C, and 
Cedar/Mesa1

● Depend on results from research community

J. Gosling, H. McGilton, The Java Language Enviornment1
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Object Oriented Languages

● Ada 95
● BETA
● Boo
● C++
● C#
● ColdFusion
● Common Lisp
● COOL (Object 

Oriented COBOL)
● CorbaScript
● Clarion
● Corn
● D
● Dylan
● Eiffel
● F-Script
● Fortran 2003
● Gambas
● Graphtalk
● IDLscript
● incr Tcl
● J
● JADE

● Java
● Lasso
● Lava
● Lexico
● Lingo
● Modula-2
● Modula-3
● Moto
● Nemerle
● Nuva
● NetRexx
● Nuva
● Oberon (Oberon-1)
● Object REXX
● Objective-C
● Objective Caml
● Object Pascal 

(Delphi)
● Oz
● Perl 5
● PHP
● Pliant
● PRM
● PowerBuilder

● ABCL
● Python
● REALbasic
● Revolution
● Ruby
● Scala
● Simula
● Smalltalk
● Self
● Squeak
● Squirrel
● STOOP (Tcl

extension)
● Superx++
● TADS
● Ubercode
● Visual Basic
● Visual FoxPro
● Visual Prolog
● Tcl
● ZZT-oop

Source: Wikipedia
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Language Evolution
From FORTRAN to a few present day languages

Source: Eric Levenez
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Origins of C++

Source: B. Stroustrup, The Design and Evolution of C++
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Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception
handling design was the work on fault-tolerant systems started at the 
University of Newcastle in England by Brian Randell and his 
colleagues and continued in many places since.”

-- B. Stroustrup, A History of C++

…
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Origins of Java
● Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa
● Example lessons learned:

Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator 
overloading, automatic coercion, etc.)
Pointers removed based on studies of bug injection
GOTO removed based on studies of usage patterns
Objects based on Eiffel, SmallTalk
Java interfaces based on Objective C protocols
Synchronization follows monitor and condition variable paradigm (introduced by 
Hoare, implemented in Cedar/Mesa)
Bytecode approach validated as early as UCSD P-System (‘70s)

Lesser-known precursors essential to Java’s success

Source: J. Gosling, H. McGilton, The Java Language Enviornment
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Why New Programming Models 
and Languages?
● Paradigm shift in architecture

From sequential to multicore
Need a new “common machine language”

● New application domains
Streaming
Scripting
Event-driven (real-time)

● New hardware features
Transactions 
Introspection
Scalar Operand Networks or Core-to-core DMA

● New customers
Mobile devices
The average programmer!

● Can we achieve parallelism without burdening the programmer?
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Domain Specific Languages

● There is no single programming domain!
Many programs don’t fit the OO model (ex: scripting and 
streaming)

● Need to identify new programming models/domains
Develop domain specific end-to-end systems
Develop languages, tools, applications ⇒ a body of 
knowledge

● Stitching multiple domains together is a hard problem
A central concept in one domain may not exist in another
– Shared memory is critical for transactions, but not available in

streaming 
Need conceptually simple and formally rigorous interfaces 
Need integrated tools
But critical for many applications
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programmability

domain specific
optimizations

enable parallel
execution

simple and effective optimizations for 
domain specific abstractions

boost productivity, enable faster 
development and rapid prototyping

Compiler-Aware Language Design: 
StreamIt Experience

● Some programming models are inherently concurrent
Coding them using a sequential  language is…
– Harder than using the right parallel abstraction 
– All information on inherent parallelism is lost

● There are win-win situations 
Increasing the programmer productivity while extracting parallel
performance

target tiled architectures, clusters, 
DSPs, multicores, graphics processors, 

…
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Parallelizing Compilers: 
SUIF Experience 

● Automatic Parallelism is not impossible
Can work well in many domains (example: ILP)

● Automatic Parallelism for multiprocessors “almost” worked in the ‘90s
SUIF compiler got the Best SPEC results by automatic parallelization

● But…
The compilers were not robust
Clients were impossible (performance at any cost)
Multiprocessor communication was expensive 
Had to compete with improvements in sequential performance
The Dogfooding problem

● Today: Programs are even harder to analyze
Complex data structures
Complex control flow
Complex build process  
Aliasing problem (type unsafe languages)
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Compilers

● Compilers are critical in reducing the burden on 
programmers

Identification of data parallel loops can be easily 
automated, but many current systems (Brook, 
PeakStream) require the programmer to do it.

● Need to revive the push for automatic parallelization
Best case: totally automated parallelization hidden from 
the user
Worst case: simplify the task of the programmer 
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Tools

● A lot of progress in tools to improve programmer 
productivity

● Need tools to
Identify parallelism
Debug parallel code
Update and maintain parallel code
Stitch multiple domains together

● Need an “Eclipse platform for multicores”
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Facilitate Evaluation and Feedback for 
Rapid Evolution

Language/Compiler/Tools
Idea

Implementation

Evaluation

Evaluation

Develop a
Program

Functional
Debugging

Performance
DebuggingEvaluate
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The Dogfooding Problem
CAD Tools vs. OO Languages

● CAD Tools
Universally hated by the 
users
Only a few can hack it
Very painful to use

● Origins
Developed by CAD experts
User community is separate 

● Object Oriented Languages
User friendly 
Universal acceptance 
Use by ordinary 
programmers
Huge improvements in 
programmer productivity

● Origins
Developed by PL experts
The compiler is always 
written using the 
language/tools
Rapid feedback

● High Performance Languages
User community is separate
Hard to get feedback
Slow evolution
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Rapid Evaluation 

● Extremely hard to get
Real users have no interest in flaky tools
Hard to quantify 
Superficial users vs. Deep users will give different feedback
– Fatal flaws as well as amazing uses may not come out immediately

● Need a huge, sophisticated (and expensive) infrastructure 
How to get a lot of application experts to use the system? 
How do you get them to become an expert?
How do you get them to use it for a long time?
How do you scientifically evaluate?
How go you get actionable feedback? 

● A “Center for Evaluating Multicore Programming Environments”?? 
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Identify, Collect, Standardize, Adopt

● Good languages/tools cannot be designed by 
committee

● However, you need a vibrant ecosystem of ideas 

● Need a process of natural selection 
Quantify Productivity and Performance 
Competition between multiple teams
Winner(s) get to design the final language 
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Migrate the Dusty Deck

● Impossible to bring them to the new era automatically 
Badly mangled, hand-optimized, impossible to analyze code
Automatic compilation, even with a heroic effort, cannot do anything

● Help rewrite the huge stack of dusty deck
Application in use
Source code available
Programmer long gone

● Getting the new program to have the same behavior is hard
“Word pagination problem”

● Can take advantage of many recent advances
Creating test cases
Extracting invariants 
Failure oblivious computing
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Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries 
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How about Revolutions?

● What are the far-out technologies?
● Wishful Thinking? 
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Outline

● Evolution
Trends
Architecture
Languages, Compilers and Tools

● Revolution
● Crossing the Abstraction Boundaries 
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Computer Systems from 10,000 feet
foo(int x)
{ .. }

class of
computation

convenient
physical 
phenomenon

… we use 
abstractions 
to make this 
easier
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The Abstraction Layers Make This Easier

foo(int x) { .. }

Computation
Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science
Physics

IBM 360/RISC/Transmeta
Fortran

Mead & Conway
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A Case Against Entrenched Abstractions 

foo(int x) { .. }

Computation
Language / API
Compiler / OS
ISA
Micro Architecture
Layout
Design Style
Design Rules
Process
Materials Science
Physics


