6.189 IAP 2007

Lecture 18

The Future

Prof. Saman Amarasinghe, MIT. 1 6.189 IAP 2007 MIT



Predicting the Future is Always Risky

e "| think there is a world market for
maybe five computers.”
— Thomas Watson, chairman of IBM, 1949

e "There is no reason in the world
anyone would want a computer in their
home. No reason.”

— Ken Olsen, Chairman, DEC, 1977

e "640K of RAM ought to be enough for
anybody.”
— Bill Gates, 1981

Prof. Saman Amarasinghe, MIT. 2 6.189 IAP 2007 MIT



Future = Evolution + Revolution

e Evolution
= Relatively easy to predict
= Extrapolate the trends

e Revolution

= A completely new technology or solution
= Hard to Predict

e Paradigm Shifts can occur in both

Prof. Saman Amarasinghe, MIT. 3 6.189 IAP 2007 MIT



Outline

e Evolution
= Trends
= Architecture
= Languages, Compilers and Tools

e Revolution
e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 4 6.189 IAP 2007 MIT



Evolution

e Look at the trends
= Moore's Law
= Power Consumption
= Wire Delay
= Hardware Complexity
= Parallelizing Compilers
= Program Design Methodologies

e Design Drivers are different in -
Different Generations

Prof. Saman Amarasinghe, MIT. 5 6.189 IAP 2007 MIT



The March to Multicore:
Moore’s Law

[ §

1,000,000,000

From Hennessy and Patterson, Computer Architecture:ltanium 2
A Quantitative Approach, 4th edition, 2006 [tanium 7

100,000,000

10,000,000

1,000,000

sJo)sisuel] Jo JaquinN

100,000

8086

T T T T T T T T T T T T T T T T T T 10,000
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

Prof. Saman Amarasinghe, MIT. 6 6.189 IAP 2007 MiTid patterson



10000.00

1000.00

100.00

10.00

1.00

The March to Multicore:
Uniprocessor Performance (SPECint)

@ intel 386

intel 486

intel pentium
Xintel pentium?2

@ intel pentium3
4 intel pentium4

® intel itanium

== Alpha 21064
Alpha 21164
Alpha 21264
Sparc
Super Spar ¢
Spar c64
Mips
HP PA

=» Power PC

¢ AMDK®6
AMD K7

& AMD x86-64

Specint2000

| g ®

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 0102 03 04 05 06 07

Prof. Saman Amarasinghe, MIT.

6.189 IAP 2007 MIT




Power Consumption (watts)

1000

100

10

1

® intel 386

intel 486

intel pentium
X intel pentium2
® intel pentium3
<+ intel pentium4
® intel itanium
= Alpha 21064

Alpha21164

Alpha 21264

Sparc
Super Spar ¢
Spar c64
Mips
HP PA
“* Power PC
¢ AMDK®6
AMDK7
€ AMD x86-64

Power

85

Prof. Saman Amarasinghe, MIT.

87 89

6.189 IAP 2007 MIT




Power Efficiency (watts/spec)

0.7

W intel 386
intel 486 -
06 . intel pentium
Xintel pentium 2
@ intel pentium 3
05 | | + intel pentium 4
=intel itanium '|"'|'.|_
= Alpha 21064
04 | Alpha 21164
Alpha 21264
Sparc 14
03 1 SuperSparc
Sparc64
Mips
02 | HPPA
—PowerPC
AMD K6 e St
0.1 " AMDK? _

€& AMD x86-64 _ I SE:
m " " - o x= "=

Watts/Spec

O 1 1 1
1982 1984 1987 1990 1993 1995 1998 2001 2004 2006

Year

Prof. Saman Amarasinghe, MIT. 9 6.189 IAP 2007 MIT



—~~
0.
O 0.16 -
| -
G014
& 012
N
o 0.1+
B 0.08 -
S 0.06 -
| -
O 0.04
0.02 -

Range of a Wire in One Clock Cycle

25 GHz

1)
o
it

13.5 GHz

0

1996
« 400 mmZ Die

1998

2000

2002

* From the SIA Roadmap

Prof. Saman Amarasinghe, MIT.

2004

Year

10

2006

2008

2010

2012

2014

6.189 IAP 2007 MIT



Performance

DRAM Access Latency

1000000 -

uProc
60%!/yr.
(2X/1.5yr)

10000 -

100

DRAM
9%l yr.

S PSSP (2X10yrs
NS \e \e O NS D > D D D N\ N \
A I A N N M. S SO ( yrs)

1,

Year

Prof. Saman Amarasinghe, MIT. 11 6.189 IAP 2007 MIT



Improvement in Automatic Parallelization

Automatic
Parallelizing D_emand
Compilers for driven by
' ?
Compiling for FORTRAN Multicores:
I nstruction Typesdfe I
Lelvel languages /
Parallelism (ava, O ,
V ectorization \ \/7 p: /
technology _
Prevalence of type
W unsafe languages and
—r Compl ex data
structures (C, C++)
1970 1980 1990 2000 2010

Prof. Saman Amarasinghe, MIT.

12 6.189 IAP 2007 MIT



Multicores are here

512

Picochip Ambric
PC102 A& )\ 15045

256

128

64

# of 32

cores

Cisco
CSR—lA
Intel
Tflops
A
Raza  Cavium
Raw XLR  Octeon
A Y N}

Niagara.g A Cell

Boardcom 1480 Opteron 4P

Xbox360

A
PA-8800 opteron  Tanglewood
POWEIA . Aol dhlh ol

A-Ak--eon WP

PExtreme Power6
4004 8080 8086 286 386 486  Pentium P2 P3 Itanium 'ona"
11k ke A Y V— A A A AMPAA-A
8008 Athlon Itanium 2
1970 1975 1980 1985 1990 1995 2000 2005 20?7?
Prof. Saman Amarasinghe, MIT. 13 6.189 IAP 2007 MIT



Outline

= Architecture
= Languages, Compilers and Tools

e Revolution
e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 14 6.189 IAP 2007 MIT



Novel Opportunities in Multicores

e Don’t have to contend with uniprocessors
= The era of Moore’s Law induced performance gains is over!

= Parallel programming will be required by the masses
— not just a few supercomputer super-users

Prof. Saman Amarasinghe, MIT. 15 6.189 IAP 2007 MIT



Novel Opportunities in Multicores

e Don’t have to contend with uniprocessors
= The era of Moore’s Law induced performance gains is over!

= Parallel programming will be required by the masses
— not just a few supercomputer super-users

e Not your same old multiprocessor problem
= How does going from Multiprocessors to Multicores impact
programs?
= What changed?

= Where is the Impact?
—  Communication Bandwidth
— Communication Latency

Prof. Saman Amarasinghe, MIT. 16 6.189 IAP 2007 MIT



Communication Bandwidth

e How much data can be communicated
between two cores?

e \What changed?

= Number of Wires
— |O is the true bottleneck
—  On-chip wire density is very high

m Clock rate

e Impact on programming model?

- IO.is SIO\_Ner than on-chip 32 Giga bits/sec  ~300 Tera bits/sec
= Multiplexing
T
| |
= Massive data exchange is possible
s Data movement is not the bottleneck

— No sharing of pins
—> processor affinity not that important
Prof. Saman Amarasinghe, MIT. 17 6.189 IAP 2007 MIT



Communication Latency

e How long does it take for a round trip
communication?

e What changed?
= Length of wire
— Very short wires are faster

= Pipeline stages
—  No multiplexing

— On-chip is much closer ~200 Cycles ~4 cycles
—- Bypass and Speculation? | |
l I
e Impact on programming model? | ¢ |

= Ultra-fast synchronization

= Can run real-time apps
on multiple cores

Prof. Saman Amarasinghe, MIT. 18 6.189 IAP 2007 MIT



Past, Present and the Future?

Traditional Basic Multicore
~Multiprocessor IBM Powerd

- e - ==
L] B k 1

T o

$$ $$

" emoy

Prof. Saman Amarasinghe, MIT. 19

Integrated Multicore
16 Tile MIT Raw

Memory § Memory

Memory § Memory
6.189 IAP 2007 MIT



Outline

= Languages, Compilers and Tools
e Revolution
e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 20 6.189 IAP 2007 MIT



The OO Revolution

Object Oriented revolution did not come out of a vacuum

Hundreds of small experimental languages

Rely on lessons learned from lesser-known languages

= C++ grew out of C, Simula, and other languages

= Java grew out of C++, Eiffel, SmallTalk, Objective C, and

Cedar/Mesa’

Depend on results from research community

Prof. Saman Amarasinghe, MIT.

211 3. Gosling, H. McGilton, The Javi89 ¥3228é BhViornment



Object Oriented Languages

Ada 95

BETA

Boo

C++

C#
ColdFusion
Common Lisp

COOL (Object
Oriented COBOL)

CorbaScript
Clarion
Corn

D

Dylan

Eiffel
F-Script
Fortran 2003
Gambas
Graphtalk
IDLscript
incr Tcl

J

JADE

Prof. Saman Amarasinghe, MIT.

Java

Lasso

Lava

Lexico

Lingo
Modula-2
Modula-3
Moto
Nemerle
Nuva
NetRexx
Nuva

Oberon (Oberon-1)
Object REXX
Objective-C
Objective Caml
Object Pascal
(Delphi)

Oz

Perl 5

PHP

Pliant

PRM
PowerBiilder

ABCL
Python
REALDbasic
Revolution
Ruby
Scala
Simula
Smalltalk
Self
Squeak
Squirrel

STOORP (Tcl
extension)

Superx++
TADS
Ubercode
Visual Basic
Visual FoxPro
Visual Prolog
Tcl

ZZT-00p

Source: Wikipedia g 189 |AP 2007 MIT



Language Evolution
From FORTRAN to a few present day lanquages

2000

2002

2003

Posteript bevald
~ 3015

-
005
e TelTkES w Tl Tkad pe  ToliTh G4l TelThk&.42 TelfTk& 45 Tel/Tk S 4.4
T acbobar 22, 7001 P saptembeer 10, Z00Z october Z2E, 200E march 3, 2005 may 20, E0G july 22, EOOZ
Foctesn 2000
' (drfty
septenvber 30, 2008
Deelphi & g Dzlphi 7
P oy | o W gt 6, 200
Fython 1.5 g Fython 20 g EYthon Tl g Futhon 23 gon F¥thon 321 g Python 222 g Fython 23al _ ge, Python 233 g E¥thon 3.3 .
spermbar 5, 2000 setober 16, 2000 apedl 17, 2001 Jecembear 21, 2001 apedl 10, 2002 T ectober 14, 2O0E fabruary 19, 2005 may 30, 2003 july 29, 2005
- COBOL DL IZ0AIET
\ Jecornbar 2002 L
] ] c# .0
juna gs*! 2000 P (ECMA) - 20 [bel] ——
1 * decembeer 13 2001 march 25 2005 july 2003
-
‘= JREoript g \
o Javseript 10
d it 4
i - ™ g 25, 200z Teradiridd) -l
i o ECT Afeript =44 (At et = M
Lani 20E —~ Jom T
; Tsva(vl3) Tava T{vld) Teve {14001 il Taws 2iv141 03
e P —_— e L g Tawm Tivldl) g (w141 07 o
may 2000 o Fc:::‘,';ﬁgg june 4 20E Zoptem ber POCE " Fabruary 27, 7003 W june 12003 —H
g Ruby 151 g FRubylss g Fuby 167 e Ruby 153 . Ruby 1
r;qpmm“':zr =7, 000 B eptember 19, 2001 B march 1, 2002 7 december 29 BOGE T g @
. 2IE4L [ N[ R
o IEEEiffelS T augua 7, 3001 T september EO02
a7 .
THE 40 e TDHEL1D g FEF 430 g, FHP 423 PHE 4.3.3 THF 450 PHE 451 FPHP 431 e T
way 25, 2000 T december 8 2001 apell 25, BO0E - T july 2, ZO0E sepbember £, P02 december 27, ZO0E feb. 17, 2003 way 29, 2003 o augu:
ParlS &0 PerlS70 FParl 550
o arch 25, 2000 T geptember 2 00 - 1s 2o »
0*Caml 3.00 O tam | 30 0°Cam 1303 g 0" Cam | 504 OCam | 305 O Gl 5.0
— = 2000 By 30, 2001 P 3ac 10, 2001 W 3 1z, 200 T B0y zs, mee W0y 0z 2o 0 b

- YE.MET
P [Wimial Basic R.0) e
=00

(IR I

NSALLIMALL 7 ML AT gl Ny

~. . ~~Sources Erie Levenez



Origins of C++

— Structural influence
————— Feature influence

Fortran—l

1960 Algol 60 ;

1 CPL l

' .

1970+ BClpL SIFT‘]U'Ja 67

i C
1980 + Algol 68-~._ H ML Clu

.. Cwith Classes” .-~ -~

T Ada \\“C-*|-+<~’/// 7
1990 4 ST ANSIC | LT T

| *C++larm‘

v C++std

Prof. Saman Amarasinghe, MIT.

24 Source: B. Stroustrup, The BestghAR@E0oMtlon of C++



Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception

handling design was the work on fault-tolerant systems started at the
University of Newcastle in England by Brian Randell and his
colleagues and continued in many places since.”

-- B. Stroustrup, A History of C++

Prof. Saman Amarasinghe, MIT. 25 6.189 IAP 2007 MIT




Origins of Java

e Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa

e Example lessons learned:

= Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator
overloading, automatic coercion, etc.)

= Pointers removed based on studies of bug injection
= GOTO removed based on studies of usage patterns
= Objects based on Eiffel, SmallTalk

= Java interfaces based on Objective C protocols

= Synchronization follows monitor and condition variable paradigm (introduced by
Hoare, implemented in Cedar/Mesa)

= Bytecode approach validated as early as UCSD P-System (“70s)
- Lesser-known precursors essential to Java’'s success

Prof. Saman Amarasinghe, MIT. Sou®Be: J. Gosling, H. McGilton, The Jat89 Kxitjdagé Miviornment



Why New Programming Models
and Languages?

e Paradigm shift in architecture
= From sequential to multicore
= Need a new “common machine language”

e New application domains
= Streaming
= Scripting
= Event-driven (real-time)

e New hardware features
= [ransactions
= Introspection
= Scalar Operand Networks or Core-to-core DMA

e New customers
= Mobile devices
= The average programmer!

e Can we achieve parallelism without burdening the programmer?

Prof. Saman Amarasinghe, MIT. 27 6.189 IAP 2007 MIT



Domain Specific Languages

e There is no single programming domain!

= Many programs don't fit the OO model (ex: scripting and
streaming)

e Need to identify new programming models/domains
= Develop domain specific end-to-end systems

= Develop languages, tools, applications = a body of
knowledge

e Stitching multiple domains together is a hard problem

= A central concept in one domain may not exist in another

— Shared memory is critical for transactions, but not available in
streaming

= Need conceptually simple and formally rigorous interfaces
= Need integrated tools
= But critical for many applications

Prof. Saman Amarasinghe, MIT. 28 6.189 IAP 2007 MIT



Compiler-Aware Language Design:
StreamlIt Experience

boost productivity, enable faster
development and rapid prototyping

programmability

domain specific enable parallel
optimizations execution
simple and effective optimizations for target tiled architectures, clusters,

domain specific abstractions DSPs, multicores, graphics processors,

e Some programming models are inherently concurrent

= Coding them using a sequential language is...
— Harder than using the right parallel abstraction
— All information on inherent parallelism is lost

e There are win-win situations

= Increasing the programmer productivity while extracting parallel
performance

Prof. Saman Amarasinghe, MIT. 29 6.189 IAP 2007 MIT



Streamlt Performance on Raw

Throughput Normalized to Single Core Streaml|

E

1 2 3 4 5 6 7 8 9 10 11 12

Benchmarks

GeoMean

Prof. Saman Amarasinghe, MIT.

30

6.189 IAP 2007 MIT



Parallelizing Compilers:

SUIF Exgerience

e Automatic Parallelism is not impossible

Can work well in many domains (example: ILP)

e Automatic Parallelism for multiprocessors “almost” worked in the ‘90s

SUIF compiler got the Best SPEC results by automatic parallelization

e But...

The compilers were not robust

Clients were impossible (performance at any cost)
Multiprocessor communication was expensive

Had to compete with improvements in sequential performance
The Dogfooding problem

e Today: Programs are even harder to analyze

Complex data structures

Complex control flow

Complex build process

Aliasing problem (type unsafe languages)

Prof. Saman Amarasinghe, MIT. 31 6.189 IAP 2007 MIT



Compilers

e Compilers are critical in reducing the burden on
programmers

= |dentification of data parallel loops can be easily
automated, but many current systems (Brook,
PeakStream) require the programmer to do it.

e Need to revive the push for automatic parallelization

= Best case: totally automated parallelization hidden from
the user

= Worst case: simplify the task of the programmer

Prof. Saman Amarasinghe, MIT. 32 6.189 IAP 2007 MIT



Tools

e A lot of progress in tools to improve programmer
productivity

e Need tools to
= |dentify parallelism
= Debug parallel code
= Update and maintain parallel code
= Stitch multiple domains together

e Need an “Eclipse platform for multicores”

Prof. Saman Amarasinghe, MIT. 33 6.189 IAP 2007 MIT



Facilitate Evaluation and Feedback for

Rapid Evolution

Language/Compiler/Tools
Idea
Performance Functional . Develop a
Debugging Debugging Program

Evaluation

Prof. Saman Amarasinghe, MIT. 34 6.189 IAP 2007 MIT



The Dogfooding Problem
— CADToo0lsyvs OO languages

e CAD Tools e Object Oriented Languages
= Universally hated by the = User friendly
users = Universal acceptance
= Only a few can hack it = Use by ordinary
= Very painful to use programmers

= Huge improvements in
programmer productivity

e Oirigins .
= Developed by CAD experts e Origins
= User community is separate = Developed by PL experts

= The compiler is always
written using the
language/tools

= Rapid feedback
e High Performance Languages
= User community is separate -
= Hard to get feedback

= Slow evolution
Prof. Saman Amarasinghe, MIT. 35 6.189 IAP 2007 MIT




Rapid Evaluation

e Extremely hard to get
= Real users have no interest in flaky tools
= Hard to quantify

= Superficial users vs. Deep users will give different feedback
— Fatal flaws as well as amazing uses may not come out immediately

e Need a huge, sophisticated (and expensive) infrastructure
= How to get a lot of application experts to use the system?
= How do you get them to become an expert?
= How do you get them to use it for a long time?
= How do you scientifically evaluate?
= How go you get actionable feedback?

e A “Center for Evaluating Multicore Programming Environments”??

Prof. Saman Amarasinghe, MIT. 36 6.189 IAP 2007 MIT



ldentify, Collect, Standardize, Adopt

e Good languages/tools cannot be designed by
committee

e However, you need a vibrant ecosystem of ideas

e Need a process of natural selection
= Quantify Productivity and Performance
= Competition between multiple teams
= Winner(s) get to design the final language

Prof. Saman Amarasinghe, MIT. 37 6.189 IAP 2007 MIT



Migrate the Dusty Deck

e Impossible to bring them to the new era automatically
= Badly mangled, hand-optimized, impossible to analyze code
= Automatic compilation, even with a heroic effort, cannot do anything

e Help rewrite the huge stack of dusty deck
= Application in use
= Source code available
= Programmer long gone

e (Getting the new program to have the same behavior is hard
= “Word pagination problem”

e (Can take advantage of many recent advances
= Creating test cases
= Extracting invariants
= Failure oblivious computing

Prof. Saman Amarasinghe, MIT. 38 6.189 IAP 2007 MIT



Outline

e Revolution
e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 39 6.189 IAP 2007 MIT



How about Revolutions?

e What are the far-out technologies?
e Wishful Thinking?

Prof. Saman Amarasinghe, MIT. 40 6.189 IAP 2007 MIT



Outline

e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 41 6.189 IAP 2007 MIT



Computer Systems from 10,000 feet

cl ass of fOO(i Nt X)
conput at 1 on { ..}

]
convenl ent
physi cal
phenonenon
Prof. Saman Amarasinghe, MIT. 42 6.189 IAP 2007 MIT

...\We use
abstracti ons
to make this
easl er




The Abstraction Layers Make This Easier

foo(int x) { .. }

Conput ati on
Language / API

C 1
L]
Compiler /| OS Fortran
| SA | BM 360/ Rl SC/ Tr ansnet a
Mcro Architecture
_ayout
Desi gn Styl e

Desi gn Rul es Mead & Conway
Pr ocess

Materi als Sci ence
Physi cs

Prof. Saman Amarasinghe, MIT. 5 % 43 6.189 IAP 2007 MIT




A Case Against Entrenched Abstractions

foo(int x) { .. }

Conput ati on
Language / API
Conpiler / OS

| SA

Mcro Architecture

_ayout

Desi gn Styl e

Desi gn Rul es

Pr 0Cess

Material s Science | .
Physi cs

Prof. Saman Amarasinghe, MIT. 5 é% 44 6.189 IAP 2007 MIT



