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The Future
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Predicting the Future is Always Risky

e "| think there is a world market for
maybe five computers.”
— Thomas Watson, chairman of IBM, 1949

e "There is no reason in the world
anyone would want a computer in their
home. No reason.”

— Ken Olsen, Chairman, DEC, 1977

e "640K of RAM ought to be enough for
anybody.”
— Bill Gates, 1981
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Future = Evolution + Revolution

e Evolution
= Relatively easy to predict
= Extrapolate the trends

e Revolution

= A completely new technology or solution
= Hard to Predict

e Paradigm Shifts can occur in both
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Outline

e Evolution
= Trends
= Architecture
= Languages, Compilers and Tools

e Revolution
e Crossing the Abstraction Boundaries
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Evolution

e Look at the trends
= Moore's Law
= Power Consumption
= Wire Delay
= Hardware Complexity
= Parallelizing Compilers
= Program Design Methodologies

e Design Drivers are different in -
Different Generations
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The March to Multicore:
Moore’s Law
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The March to Multicore:
Uniprocessor Performance (SPECint)
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Power Consumption (watts)
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Power Efficiency (watts/spec)
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Performance

DRAM Access Latency
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Improvement in Automatic Parallelization

Automatic
Parallelizing D_emand
Compilers for driven by
' ?
Compiling for FORTRAN Multicores:
I nstruction Typesdfe I
Lelvel languages /
Parallelism (ava, O ,
V ectorization \ \/7 p: /
technology _
Prevalence of type
W unsafe languages and
—r Compl ex data
structures (C, C++)
1970 1980 1990 2000 2010

Prof. Saman Amarasinghe, MIT.

12 6.189 IAP 2007 MIT



Multicores are here
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Outline

= Architecture
= Languages, Compilers and Tools

e Revolution
e Crossing the Abstraction Boundaries
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Novel Opportunities in Multicores

e Don’t have to contend with uniprocessors
= The era of Moore’s Law induced performance gains is over!

= Parallel programming will be required by the masses
— not just a few supercomputer super-users
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Novel Opportunities in Multicores

e Don’t have to contend with uniprocessors
= The era of Moore’s Law induced performance gains is over!

= Parallel programming will be required by the masses
— not just a few supercomputer super-users

e Not your same old multiprocessor problem
= How does going from Multiprocessors to Multicores impact
programs?
= What changed?

= Where is the Impact?
—  Communication Bandwidth
— Communication Latency
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Communication Bandwidth

e How much data can be communicated
between two cores?

e \What changed?

= Number of Wires
— |O is the true bottleneck
—  On-chip wire density is very high

m Clock rate

e Impact on programming model?

- IO.is SIO\_Ner than on-chip 32 Giga bits/sec  ~300 Tera bits/sec
= Multiplexing
T
| |
= Massive data exchange is possible
s Data movement is not the bottleneck

— No sharing of pins
—> processor affinity not that important
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Communication Latency

e How long does it take for a round trip
communication?

e What changed?
= Length of wire
— Very short wires are faster

= Pipeline stages
—  No multiplexing

— On-chip is much closer ~200 Cycles ~4 cycles
—- Bypass and Speculation? | |
l I
e Impact on programming model? | ¢ |

= Ultra-fast synchronization

= Can run real-time apps
on multiple cores
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Past, Present and the Future?
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Outline

= Languages, Compilers and Tools
e Revolution
e Crossing the Abstraction Boundaries
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The OO Revolution

Object Oriented revolution did not come out of a vacuum

Hundreds of small experimental languages

Rely on lessons learned from lesser-known languages

= C++ grew out of C, Simula, and other languages

= Java grew out of C++, Eiffel, SmallTalk, Objective C, and

Cedar/Mesa’

Depend on results from research community
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Object Oriented Languages

Ada 95

BETA

Boo

C++

C#
ColdFusion
Common Lisp

COOL (Object
Oriented COBOL)

CorbaScript
Clarion
Corn

D

Dylan

Eiffel
F-Script
Fortran 2003
Gambas
Graphtalk
IDLscript
incr Tcl

J

JADE
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Java

Lasso

Lava

Lexico

Lingo
Modula-2
Modula-3
Moto
Nemerle
Nuva
NetRexx
Nuva

Oberon (Oberon-1)
Object REXX
Objective-C
Objective Caml
Object Pascal
(Delphi)

Oz

Perl 5

PHP

Pliant

PRM
PowerBiilder

ABCL
Python
REALDbasic
Revolution
Ruby
Scala
Simula
Smalltalk
Self
Squeak
Squirrel

STOORP (Tcl
extension)

Superx++
TADS
Ubercode
Visual Basic
Visual FoxPro
Visual Prolog
Tcl

ZZT-00p
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Language Evolution
From FORTRAN to a few present day lanquages
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Origins of C++

— Structural influence
————— Feature influence

Fortran—l
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Academic Influence on C++

“Exceptions were considered in the original design of C++, but
were postponed because there wasn't time to do a thorough job of
exploring the design and implementation issues.

In retrospect, the greatest influence on the C++ exception

handling design was the work on fault-tolerant systems started at the
University of Newcastle in England by Brian Randell and his
colleagues and continued in many places since.”

-- B. Stroustrup, A History of C++
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Origins of Java

e Java grew out of C++, Eiffel, SmallTalk, Objective C, and Cedar/Mesa

e Example lessons learned:

= Stumbling blocks of C++ removed (multiple inheritance, preprocessing, operator
overloading, automatic coercion, etc.)

= Pointers removed based on studies of bug injection
= GOTO removed based on studies of usage patterns
= Objects based on Eiffel, SmallTalk

= Java interfaces based on Objective C protocols

= Synchronization follows monitor and condition variable paradigm (introduced by
Hoare, implemented in Cedar/Mesa)

= Bytecode approach validated as early as UCSD P-System (“70s)
- Lesser-known precursors essential to Java’'s success

Prof. Saman Amarasinghe, MIT. Sou®Be: J. Gosling, H. McGilton, The Jat89 Kxitjdagé Miviornment



Why New Programming Models
and Languages?

e Paradigm shift in architecture
= From sequential to multicore
= Need a new “common machine language”

e New application domains
= Streaming
= Scripting
= Event-driven (real-time)

e New hardware features
= [ransactions
= Introspection
= Scalar Operand Networks or Core-to-core DMA

e New customers
= Mobile devices
= The average programmer!

e Can we achieve parallelism without burdening the programmer?

Prof. Saman Amarasinghe, MIT. 27 6.189 IAP 2007 MIT



Domain Specific Languages

e There is no single programming domain!

= Many programs don't fit the OO model (ex: scripting and
streaming)

e Need to identify new programming models/domains
= Develop domain specific end-to-end systems

= Develop languages, tools, applications = a body of
knowledge

e Stitching multiple domains together is a hard problem

= A central concept in one domain may not exist in another

— Shared memory is critical for transactions, but not available in
streaming

= Need conceptually simple and formally rigorous interfaces
= Need integrated tools
= But critical for many applications
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Compiler-Aware Language Design:
StreamlIt Experience

boost productivity, enable faster
development and rapid prototyping

programmability

domain specific enable parallel
optimizations execution
simple and effective optimizations for target tiled architectures, clusters,

domain specific abstractions DSPs, multicores, graphics processors,

e Some programming models are inherently concurrent

= Coding them using a sequential language is...
— Harder than using the right parallel abstraction
— All information on inherent parallelism is lost

e There are win-win situations

= Increasing the programmer productivity while extracting parallel
performance
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Parallelizing Compilers:

SUIF Exgerience

e Automatic Parallelism is not impossible

Can work well in many domains (example: ILP)

e Automatic Parallelism for multiprocessors “almost” worked in the ‘90s

SUIF compiler got the Best SPEC results by automatic parallelization

e But...

The compilers were not robust

Clients were impossible (performance at any cost)
Multiprocessor communication was expensive

Had to compete with improvements in sequential performance
The Dogfooding problem

e Today: Programs are even harder to analyze

Complex data structures

Complex control flow

Complex build process

Aliasing problem (type unsafe languages)
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Compilers

e Compilers are critical in reducing the burden on
programmers

= |dentification of data parallel loops can be easily
automated, but many current systems (Brook,
PeakStream) require the programmer to do it.

e Need to revive the push for automatic parallelization

= Best case: totally automated parallelization hidden from
the user

= Worst case: simplify the task of the programmer
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Tools

e A lot of progress in tools to improve programmer
productivity

e Need tools to
= |dentify parallelism
= Debug parallel code
= Update and maintain parallel code
= Stitch multiple domains together

e Need an “Eclipse platform for multicores”
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Facilitate Evaluation and Feedback for

Rapid Evolution

Language/Compiler/Tools
Idea
Performance Functional . Develop a
Debugging Debugging Program

Evaluation
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The Dogfooding Problem
— CADToo0lsyvs OO languages

e CAD Tools e Object Oriented Languages
= Universally hated by the = User friendly
users = Universal acceptance
= Only a few can hack it = Use by ordinary
= Very painful to use programmers

= Huge improvements in
programmer productivity

e Oirigins .
= Developed by CAD experts e Origins
= User community is separate = Developed by PL experts

= The compiler is always
written using the
language/tools

= Rapid feedback
e High Performance Languages
= User community is separate -
= Hard to get feedback

= Slow evolution
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Rapid Evaluation

e Extremely hard to get
= Real users have no interest in flaky tools
= Hard to quantify

= Superficial users vs. Deep users will give different feedback
— Fatal flaws as well as amazing uses may not come out immediately

e Need a huge, sophisticated (and expensive) infrastructure
= How to get a lot of application experts to use the system?
= How do you get them to become an expert?
= How do you get them to use it for a long time?
= How do you scientifically evaluate?
= How go you get actionable feedback?

e A “Center for Evaluating Multicore Programming Environments”??
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ldentify, Collect, Standardize, Adopt

e Good languages/tools cannot be designed by
committee

e However, you need a vibrant ecosystem of ideas

e Need a process of natural selection
= Quantify Productivity and Performance
= Competition between multiple teams
= Winner(s) get to design the final language
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Migrate the Dusty Deck

e Impossible to bring them to the new era automatically
= Badly mangled, hand-optimized, impossible to analyze code
= Automatic compilation, even with a heroic effort, cannot do anything

e Help rewrite the huge stack of dusty deck
= Application in use
= Source code available
= Programmer long gone

e (Getting the new program to have the same behavior is hard
= “Word pagination problem”

e (Can take advantage of many recent advances
= Creating test cases
= Extracting invariants
= Failure oblivious computing
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Outline

e Revolution
e Crossing the Abstraction Boundaries

Prof. Saman Amarasinghe, MIT. 39 6.189 IAP 2007 MIT



How about Revolutions?

e What are the far-out technologies?
e Wishful Thinking?
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Outline

e Crossing the Abstraction Boundaries
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Computer Systems from 10,000 feet

cl ass of fOO(i Nt X)
conput at 1 on { ..}

]
convenl ent
physi cal
phenonenon
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The Abstraction Layers Make This Easier

foo(int x) { .. }

Conput ati on
Language / API

C 1
L]
Compiler /| OS Fortran
| SA | BM 360/ Rl SC/ Tr ansnet a
Mcro Architecture
_ayout
Desi gn Styl e

Desi gn Rul es Mead & Conway
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Materi als Sci ence
Physi cs
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A Case Against Entrenched Abstractions

foo(int x) { .. }
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Language / API
Conpiler / OS
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