
Dr. Rodric Rabbah, IBM. 1 6.189 IAP 2007 MIT

6.189 IAP 2007

Lecture 5

Parallel Programming Concepts

2 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Recap

Shared memory
– Ex: Intel Core 2 Duo/Quad
– One copy of data shared

among many cores
– Atomicity, locking and

synchronization
essential for correctness

– Many scalability issues

Distributed memory
– Ex: Cell
– Cores primarily access local

memory
– Explicit data exchange

between cores
– Data distribution and

communication orchestration
is essential for performance

P1 P2 P3 Pn

Interconnection Network

Memory Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

● Two primary patterns of multicore architecture design

3 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Programming Shared Memory Processors

● Processor 1…n ask for X

● There is only one place to look

● Communication through
shared variables

● Race conditions possible
Use synchronization to protect from conflicts
Change how data is stored to minimize synchronization

P1 P2 P3 Pn

Interconnection Network

Memory

x

4 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Parallelization

● Data parallel
Perform same computation
but operate on different data

● A single process can fork
multiple concurrent threads

Each thread encapsulate its own execution path
Each thread has local state and shared resources
Threads communicate through shared resources
such as global memory

for (i = 0; i < 12; i++)
C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

join (barrier)

fork (threads)

5 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Parallelization With Threads
int A[12] = {...}; int B[12] = {...}; int C[12];

void add_arrays(int start)
{

int i;

for (i = start; i < start + 4; i++)
C[i] = A[i] + B[i];

}

int main (int argc, char *argv[])
{

pthread_t threads_ids[3];
int rc, t;

for(t = 0; t < 4; t++) {
rc = pthread_create(&thread_ids[t],

NULL /* attributes */,
add_arrays /* function */,
t * 4 /* args to function */);

}
pthread_exit(NULL);

}

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)

6 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Types of Parallelism

● Data parallelism
Perform same computation
but operate on different data

● Control parallelism
Perform different functions

fork (threads)

join (barrier)
pthread_create(/* thread id */,

/* attributes */,
/* any function */,
/* args to function */);

7 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Parallel Programming with OpenMP

● Start with a parallelizable algorithm
SPMD model (same program, multiple data)

● Annotate the code with parallelization and
synchronization directives (pragmas)

Assumes programmers knows what they are doing
Code regions marked parallel are considered independent
Programmer is responsibility for protection against races

● Test and Debug

8 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Simple OpenMP Example

● (data) parallel pragma
execute as many as there
are processors (threads)

● for pragma
loop is parallel, can divide
work (work-sharing)

#pragma omp parallel
#pragma omp for

for(i = 0; i < 12; i++)
C[i] = A[i] + B[i];

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)

9 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Programming Distributed Memory Processors

● Processors 1…n ask for X
● There are n places to look

Each processor’s memory
has its own X
Xs may vary

● For Processor 1 to look at Processors 2’s X
Processor 1 has to request X from Processor 2
Processor 2 sends a copy of its own X to Processor 1
Processor 1 receives the copy
Processor 1 stores the copy in its own memory

Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn
xxxx

10 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Message Passing

● Architectures with distributed memories use explicit
communication to exchange data

Data exchange requires synchronization (cooperation)
between senders and receivers

– How is “data” described
– How are processes identified
– Will receiver recognize or screen messages
– What does it mean for a send or receive to complete

P1 P2

Send(data)

Receive(data)

11 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example Message Passing Program

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

P1

M1

P2

M2
x

y

B

A

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to
C[1..4][1..4]

12 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

x

y

B

A

P1

M1

P2

M2

C

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to
C[1..4][1..4]

13 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to
C[1..4][1..4]

● Can break up work
between the two
processors

P1 sends data to P2

14 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

● Can break up work
between the two
processors

P1 sends data to P2

P1 and P2 compute

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to
C[1..4][1..4]

15 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

● Can break up work
between the two
processors

P1 sends data to P2

P1 and P2 compute
P2 sends output to P1

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to
C[1..4][1..4]

16 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

A[n] = {…}

B[n] = {…}

Send (A[n/2+1..n], B[1..n])

for (i = 1 to n/2)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Receive(C[n/2+1..n][1..n])

A[n] = {…}

B[n] = {…}

Receive(A[n/2+1..n], B[1..n])

for (i = n/2+1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Send (C[n/2+1..n][1..n])

processor 1 processor 2

processor 1

parallel with messages
sequential

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

17 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Performance Analysis

● Distance calculations between points are
independent of each other

Dividing the work between
two processors 2x speedup
Dividing the work between
four processors 4x speedup

● Communication
1 copy of B[] sent to each processor
1 copy of subset of A[] to each processor

● Granularity of A[] subsets directly impact communication costs
Communication is not free

x

y

18 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Understanding Performance

● What factors affect performance of parallel programs?

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication

19 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Rendering Scenes by Ray Tracing

Shoot rays into scene through pixels in image plane
Follow their paths
– Rays bounce around as they strike objects
– Rays generate new rays
Result is color and opacity for that pixel
Parallelism across rays

transmission ray

primary ray

normal

reflection

20 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Limits to Performance Scalability

● Not all programs are “embarrassingly” parallel

● Programs have sequential parts and parallel parts

a = b + c;
d = a + 1;
e = d + a;
for (i=0; i < e; i++)

M[i] = 1;

Sequential part
(data dependence)

Parallel part
(no data dependence)

21 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Coverage

● Amdahl's Law: The performance improvement to
be gained from using some faster mode of
execution is limited by the fraction of the time the
faster mode can be used.

Demonstration of the law of diminishing returns

22 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Amdahl’s Law

● Potential program speedup is defined by the fraction
of code that can be parallelized

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

23 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Amdahl’s Law

● Speedup = old running time / new running time
= 100 seconds / 60 seconds
= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

24 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

● p = fraction of work that can be parallelized
● n = the number of processor

Amdahl’s Law

fraction of time to
complete sequential
work

fraction of time to
complete parallel work

n
pp

speedup

+−
=

=

)1(

1
 timerunning new
 timerunning old

25 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Implications of Amdahl’s Law

● Speedup tends to as number of processors
tends to infinity

● Parallel programming is worthwhile when programs
have a lot of work that is parallel in nature

p−1
1

26 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Performance Scalability

Super linear speedups
are possible due to

registers and caches

Typical speedup is
less than linear

lin
ea

r s
pee

dup (1
00

% ef
fic

ien
cy

)

number of processors

sp
ee

du
p

27 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication

28 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Granularity

● Granularity is a qualitative measure of the ratio of
computation to communication

● Computation stages are typically separated from
periods of communication by synchronization events

29 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Fine vs. Coarse Granularity

● Fine-grain Parallelism
Low computation to
communication ratio
Small amounts of
computational work between
communication stages
Less opportunity for
performance enhancement
High communication
overhead

● Coarse-grain Parallelism
High computation to
communication ratio
Large amounts of
computational work between
communication events
More opportunity for
performance increase
Harder to load balance
efficiently

30 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

● Processors that finish early have to wait for the processor with
the largest amount of work to complete

Leads to idle time, lowers utilization

The Load Balancing Problem

communication stage (synchronization)

// PPU tells all SPEs to start
for (int i = 0; i < n; i++) {
spe_write_in_mbox(id[i], <message>);

}

// PPU waits for SPEs to send completion message
for (int i = 0; i < n; i++) {
while (spe_stat_out_mbox(id[i]) == 0);
spe_read_out_mbox(id[i]);

}

31 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Static Load Balancing

● Programmer make decisions and assigns a fixed
amount of work to each processing core a priori

● Works well for homogeneous multicores
All core are the same
Each core has an equal amount of work

● Not so well for heterogeneous multicores
Some cores may be faster than others
Work distribution is uneven

P2P1

work queue

32 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Dynamic Load Balancing

● When one core finishes its allocated work, it takes
on work from core with the heaviest workload

● Ideal for codes where work is uneven, and in
heterogeneous multicore

P2P1

work queue

P2P1

work queue

33 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Granularity and Performance Tradeoffs

1. Load balancing
How well is work distributed among cores?

2. Synchronization
Are there ordering constraints on execution?

34 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Data Dependence Graph

-

C[4]

C[3]

C[2]

A 2 3 C[0] C[1]B

+ + +

∗ +

+

+

35 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Dependence and Synchronization

P1 P2 P3

P3

P3

P3

Synchronisation
Points

36 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Synchronization Removal

P2 P2 P3

P2 P3

P3

P3

Synchronisation
Points

P1

37 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Granularity and Performance Tradeoffs

1. Load balancing
How well is work distributed among cores?

2. Synchronization
Are there ordering constraints on execution?

3. Communication
Communication is not cheap!

38 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Communication Cost Model

)/ (overlapt
B
mnlofC −+++∗=

frequency
of messages

overhead per
message

(at both ends)

network delay
per message

number of messages

cost induced by
contention per

message

amount of latency
hidden by concurrency

with computation

total data sent

bandwidth along path
(determined by network)

39 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Types of Communication

● Cores exchange data or control messages
Cell examples: DMA vs. Mailbox

● Control messages are often short

● Data messages are relatively much larger

40 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Overlapping Messages and Computation

● Computation and communication concurrency can be
achieved with pipelining

Think instruction pipelining in superscalars

Get Data

Work

steady state

time

Get Data

Work

Get Data

Work

Get Data Work Get Data WorkGet Data Workno pipelining

with pipelining

41 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Overlapping Messages and Computation

● Computation and communication concurrency can be
achieved with pipelining

Think instruction pipelining in superscalars

● Essential for performance on Cell and similar distributed
memory multicores

// Start transfer for first buffer
id = 0;
mfc_get(buf[id], addr, BUFFER_SIZE, id, 0, 0);
id ^= 1;

while (!done) {
// Start transfer for next buffer
addr += BUFFER_SIZE;
mfc_get(buf[id], addr, BUFFER_SIZE, id, 0, 0);

// Wait until previous DMA request finishes
id ^= 1;
mfc_write_tag_mask(1 << id);
mfc_read_tag_status_all();

// Process buffer from previous iteration
process_data(buf[id]);

}

Cell buffer pipelining example

Get Data

Work

Get Data

Work

Get Data

Work

time

42 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Communication Patterns

● With message passing, programmer has to
understand the computation and orchestrate the
communication accordingly

Point to Point
Broadcast (one to all) and Reduce (all to one)
All to All (each processor sends its data to all others)
Scatter (one to several) and Gather (several to one)

43 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

A Message Passing Library Specification

● MPI: specification
Not a language or compiler specification
Not a specific implementation or product
SPMD model (same program, multiple data)

● For parallel computers, clusters, and heterogeneous
networks, multicores

● Full-featured

● Multiple communication modes allow precise buffer
management

● Extensive collective operations for scalable global
communication

44 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Where Did MPI Come From?

● Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD)
were not portable (or very capable)

● Early portable systems (PVM, p4, TCGMSG, Chameleon)
were mainly research efforts

Did not address the full spectrum of issues
Lacked vendor support
Were not implemented at the most efficient level

● The MPI Forum organized in 1992 with broad participation
Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
Portability library writers: PVM, p4
Users: application scientists and library writers
Finished in 18 months

45 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Point-to-Point

● Basic method of communication between two processors
Originating processor "sends" message to destination processor
Destination processor then "receives" the message

● The message commonly includes
Data or other information
Length of the message
Destination address and possibly a tag

mfc_get(destination LS addr,
source memory addr,
bytes,
tag,
<...>)

mfc_put(source LS addr,
destination memory addr,
bytes,
tag,
<...>)

Cell “send” and “receive” commands

network

P1

Memory1

P2

Memory2

data

46 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Synchronous vs. Asynchronous Messages

● Synchronous send
Sender notified when
message is received

● Asynchronous send
Sender only knows
that message is sent

P1

Memory1

P2

Memory2

network

P1

Memory1

P2

Memory2

data

data

network

P1

Memory1

P2

Memory2

data

network

P1

Memory1

P2

Memory2

network

P1

Memory1

P2

Memory2

data

data

47 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Blocking vs. Non-Blocking Messages

● Blocking messages
Sender waits until
message is transmitted:
buffer is empty
Receiver waits until
message is received:
buffer is full
Potential for deadlock

● Non-blocking
Processing continues
even if message hasn't
been transmitted
Avoid idle time and
deadlocks

// DMA back results
mfc_put(data, cb.data_addr, data_size, ...);

// Wait for DMA completion
mfc_read_tag_status_all();

Cell non-blocking data “send” and “wait”
// SPE does some work
...
// SPE notifies PPU that task has completed
spu_write_out_mbox(<message>);

// SPE does some more work
...
// SPE notifies PPU that task has completed
spu_write_out_mbox(<message>);

Cell blocking mailbox “send”

48 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Sources of Deadlocks

● If there is insufficient buffer capacity, sender waits until
additional storage is available

● What happens with this code?

● Depends on length of message and available buffer

P1

Send(…)
Recv(…)

P2

Send(…)
Recv(…)

P1 P2

network
buffer

49 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

matching send-receive pair

matching receive-send pair

Solutions

● Increasing local or network buffering

● Order the sends and receives more carefully

P1

Send(…)
Recv(…)

P2

Recv(…)
Send(…)

P1

Send(…)
Recv(…)

P2

Send(…)
Recv(…)

blocked since
buffer is full
(no progress
until message
can be sent)

write message to buffer
and block until message

is transmitted
(buffer becomes empty)

50 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Broadcast

● One processor sends the
same information to many
other processors

MPI_BCAST

A[n] = {…}

B[n] = {…}

Broadcast(B[1..n])

for (i = 1 to n)

// round robin distribute B
// to m processors

Send(A[i % m])

…

for (i = 1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

P1 P2 P3 Pn

M1 M2 M3 Mn

51 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Reduction

● Example: every processor starts with a value and needs to
know the sum of values stored on all processors

● A reduction combines data from all processors and returns it
to a single process

MPI_REDUCE

Can apply any associative operation on gathered data
– ADD, OR, AND, MAX, MIN, etc.
No processor can finish reduction before each processor has
contributed a value

● BCAST/REDUCE can reduce programming complexity and may
be more efficient in some programs

52 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Example: Parallel Numerical Integration

4.0

2.0

1.00.0

4.0
(1+x2)

f(x) =

X

static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
printf(“Pi = %f\n”, pi);

}}

53 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Computing Pi With Integration (OpenMP)

● Which variables are shared?
step

● Which variables are private?
x

● Which variables does
reduction apply to?

sum

static long num_steps = 100000;

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i = 0; i < num_steps; i++){
x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
printf(“Pi = %f\n”, pi);

}

#pragma omp parallel for \
private(x) reduction(+:sum)

54 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

static long num_steps = 100000;

void main(int argc, char* argv[])
{

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)
i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {
x = (i + 0.5) ∗ step
sum = sum + 4.0 / (1.0 + x∗x);

}
mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)
printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

Computing Pi With Integration (MPI)

55 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

56 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

>>

+

Locality in Communication
(Message Passing)

57 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

A
LU

>>

+

Exploiting Communication Locality

58 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Locality of Memory Accesses
(Shared Memory)

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

59 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Locality of Memory Accesses
(Shared Memory)

A[0]
A[4]
A[8]
A[12]

A[1]
A[5]
A[9]
A[13]

A[2]
A[6]
A[10]
A[14]

A[3]
A[7]
A[11]
A[15]

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

● Parallel computation is
serialized due to memory
contention and lack of
bandwidth

60 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Locality of Memory Accesses
(Shared Memory)

A[0]
A[4]
A[8]
A[12]

A[1]
A[5]
A[9]
A[13]

A[2]
A[6]
A[10]
A[14]

A[3]
A[7]
A[11]
A[15]

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

61 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Locality of Memory Accesses
(Shared Memory)

A[0]
A[1]
A[2]
A[3]

A[4]
A[5]
A[6]
A[7]

A[8]
A[9]
A[10]
A[11]

A[12]
A[13]
A[14]
A[15]

for (i = 0; i < 16; i++)
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

● Distribute data to relieve
contention and increase
effective bandwidth

62 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Memory Access Latency in
Shared Memory Architectures

● Uniform Memory Access (UMA)
Centrally located memory
All processors are equidistant (access times)

● Non-Uniform Access (NUMA)
Physically partitioned but accessible by all
Processors have the same address space
Placement of data affects performance

63 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Summary of Parallel Performance Factors

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

● … so how do I parallelize my program?

