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Recap

Shared memory
– Ex: Intel Core 2 Duo/Quad
– One copy of data shared 

among many cores
– Atomicity, locking and 

synchronization
essential for correctness

– Many scalability issues

Distributed memory
– Ex: Cell
– Cores primarily access local 

memory
– Explicit data exchange 

between cores
– Data distribution and 

communication orchestration 
is essential for performance

P1 P2 P3 Pn

Interconnection Network

Memory Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn

● Two primary patterns of multicore architecture design
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Programming Shared Memory Processors

● Processor 1…n ask for X

● There is only one place to look

● Communication through
shared variables

● Race conditions possible
Use synchronization to protect from conflicts
Change how data is stored to minimize synchronization

P1 P2 P3 Pn

Interconnection Network

Memory

x
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Example Parallelization

● Data parallel
Perform same computation 
but operate on different data

● A single process can fork 
multiple concurrent threads

Each thread encapsulate its own execution path
Each thread has local state and shared resources 
Threads communicate through shared resources
such as global memory

for (i = 0; i < 12; i++) 
C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

join (barrier)

fork (threads)
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Example Parallelization With Threads
int A[12] = {...}; int B[12] = {...}; int C[12];

void add_arrays(int start)
{

int i;

for (i = start; i < start + 4; i++)
C[i] = A[i] + B[i];

}

int main (int argc, char *argv[])
{

pthread_t threads_ids[3];
int rc, t;

for(t = 0; t < 4; t++) {
rc = pthread_create(&thread_ids[t], 

NULL /* attributes */, 
add_arrays /* function */, 
t * 4 /* args to function */);

}
pthread_exit(NULL);

}

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)
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Types of Parallelism

● Data parallelism
Perform same computation 
but operate on different data

● Control parallelism
Perform different functions

fork (threads)

join (barrier)
pthread_create(/* thread id */,

/* attributes */, 
/* any function */,
/* args to function */);
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Parallel Programming with OpenMP

● Start with a parallelizable algorithm
SPMD model (same program, multiple data)

● Annotate the code with parallelization and 
synchronization directives (pragmas)

Assumes programmers knows what they are doing
Code regions marked parallel are considered independent
Programmer is responsibility for protection against races

● Test and Debug 
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Simple OpenMP Example

● (data) parallel pragma
execute as many as there 
are processors (threads)

● for pragma
loop is parallel, can divide 
work (work-sharing)

#pragma omp parallel
#pragma omp for

for(i = 0; i < 12; i++) 
C[i] = A[i] + B[i];

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

fork (threads)
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Programming Distributed Memory Processors

● Processors 1…n ask for X
● There are n places to look

Each processor’s memory 
has its own X
Xs may vary

● For Processor 1 to look at Processors 2’s X
Processor 1 has to request X from Processor 2
Processor 2 sends a copy of its own X to Processor 1
Processor 1 receives the copy 
Processor 1 stores the copy in its own memory

Interconnection Network

P1 P2 P3 Pn

M1 M2 M3 Mn
xxxx
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Message Passing

● Architectures with distributed memories use explicit 
communication to exchange data

Data exchange requires synchronization (cooperation) 
between senders and receivers

– How is “data” described
– How are processes identified
– Will receiver recognize or screen messages
– What does it mean for a send or receive to complete

P1 P2

Send(data)

Receive(data)
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Example Message Passing Program

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

P1

M1

P2

M2
x

y

B

A

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to 
C[1..4][1..4]



12 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

x

y

B

A

P1

M1

P2

M2

C

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to 
C[1..4][1..4]
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P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to 
C[1..4][1..4]

● Can break up work
between the two 
processors

P1 sends data to P2
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● Can break up work
between the two 
processors

P1 sends data to P2

P1 and P2 compute

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to 
C[1..4][1..4]
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● Can break up work
between the two 
processors

P1 sends data to P2

P1 and P2 compute
P2 sends output to P1

P1

M1

P2

M2

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program

● Calculate the distance from each point in A[1..4]
to every other point in B[1..4] and store results to 
C[1..4][1..4]
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A[n] = {…}

B[n] = {…}

Send (A[n/2+1..n], B[1..n])

for (i = 1 to n/2)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Receive(C[n/2+1..n][1..n])

A[n] = {…}

B[n] = {…}

Receive(A[n/2+1..n], B[1..n])

for (i = n/2+1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

Send (C[n/2+1..n][1..n])

processor 1 processor 2

processor 1

parallel with messages
sequential

for (i = 1 to 4)

for (j = 1 to 4)

C[i][j] = distance(A[i], B[j])

Example Message Passing Program
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Performance Analysis

● Distance calculations between points are
independent of each other

Dividing the work between
two processors 2x speedup
Dividing the work between
four processors 4x speedup

● Communication
1 copy of B[] sent to each processor
1 copy of subset of A[] to each processor

● Granularity of A[] subsets directly impact communication costs
Communication is not free

x

y
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Understanding Performance

● What factors affect performance of parallel programs?

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication
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Rendering Scenes by Ray Tracing

Shoot rays into scene through pixels in image plane
Follow their paths
– Rays bounce around as they strike objects
– Rays generate new rays
Result is color and opacity for that pixel
Parallelism across rays

transmission ray

primary ray

normal

reflection
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Limits to Performance Scalability

● Not all programs are “embarrassingly” parallel

● Programs have sequential parts and parallel parts

a = b + c;
d = a + 1;
e = d + a;
for (i=0; i < e; i++) 

M[i] = 1;

Sequential part
(data dependence)

Parallel part
(no data dependence)
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Coverage

● Amdahl's Law: The performance improvement to 
be gained from using some faster mode of 
execution is limited by the fraction of the time the 
faster mode can be used.

Demonstration of the law of diminishing returns
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Amdahl’s Law

● Potential program speedup is defined by the fraction 
of code that can be parallelized

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time
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Amdahl’s Law

● Speedup = old running time / new running time
= 100 seconds / 60 seconds
= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time
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● p = fraction of work that can be parallelized
● n = the number of processor

Amdahl’s Law 

fraction of time to
complete sequential
work

fraction of time to 
complete parallel work

n
pp

speedup

+−
=

=

)1(

1
 timerunning new
 timerunning old
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Implications of Amdahl’s Law

● Speedup tends to        as number of processors 
tends to infinity

● Parallel programming is worthwhile when programs 
have a lot of work that is parallel in nature

p−1
1
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Performance Scalability

Super linear speedups 
are possible due to 

registers and caches

Typical speedup is 
less than linear

lin
ea

r s
pee

dup (1
00

% ef
fic

ien
cy

)

number of processors

sp
ee

du
p
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Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of partitioning among processors

● Locality of computation and communication
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Granularity

● Granularity is a qualitative measure of the ratio of 
computation to communication 

● Computation stages are typically separated from 
periods of communication by synchronization events
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Fine vs. Coarse Granularity

● Fine-grain Parallelism
Low computation to 
communication ratio
Small amounts of 
computational work between 
communication stages 
Less opportunity for 
performance enhancement
High communication 
overhead

● Coarse-grain Parallelism
High computation to 
communication ratio 
Large amounts of 
computational work between 
communication events 
More opportunity for 
performance increase 
Harder to load balance 
efficiently 
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● Processors that finish early have to wait for the processor with
the largest amount of work to complete

Leads to idle time, lowers utilization

The Load Balancing Problem

communication stage (synchronization)

// PPU tells all SPEs to start
for (int i = 0; i < n; i++) {
spe_write_in_mbox(id[i], <message>);

}

// PPU waits for SPEs to send completion message
for (int i = 0; i < n; i++) {
while (spe_stat_out_mbox(id[i]) == 0);
spe_read_out_mbox(id[i]);

}
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Static Load Balancing

● Programmer make decisions and assigns a fixed 
amount of work to each processing core a priori

● Works well for homogeneous multicores
All core are the same 
Each core has an equal amount of work 

● Not so well for heterogeneous multicores
Some cores may be faster than others
Work distribution is uneven

P2P1

work queue
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Dynamic Load Balancing

● When one core finishes its allocated work, it takes 
on work from core with the heaviest workload

● Ideal for codes where work is uneven, and in 
heterogeneous multicore

P2P1

work queue

P2P1

work queue
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Granularity and Performance Tradeoffs

1. Load balancing
How well is work distributed among cores?

2. Synchronization
Are there ordering constraints on execution?
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Data Dependence Graph

-

C[4]

C[3]

C[2]

A 2 3 C[0] C[1]B

+ + +

∗ +

+

+
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Dependence and Synchronization

P1 P2 P3

P3

P3

P3

Synchronisation
Points
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Synchronization Removal

P2 P2 P3

P2 P3

P3

P3

Synchronisation
Points

P1
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Granularity and Performance Tradeoffs

1. Load balancing
How well is work distributed among cores?

2. Synchronization
Are there ordering constraints on execution?

3. Communication
Communication is not cheap!



38 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Communication Cost Model

)/ ( overlapt
B
mnlofC −+++∗=

frequency 
of messages

overhead per 
message 

(at both ends)

network delay 
per message

number of messages

cost induced by 
contention per 

message

amount of latency 
hidden by concurrency 

with computation

total data sent

bandwidth along path
(determined by network)



39 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Types of Communication

● Cores exchange data or control messages
Cell examples: DMA vs. Mailbox

● Control messages are often short

● Data messages are relatively much larger
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Overlapping Messages and Computation

● Computation and communication concurrency can be 
achieved with pipelining

Think instruction pipelining in superscalars

Get Data

Work

steady state

time

Get Data

Work

Get Data

Work

Get Data Work Get Data WorkGet Data Workno pipelining

with pipelining
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Overlapping Messages and Computation

● Computation and communication concurrency can be 
achieved with pipelining

Think instruction pipelining in superscalars

● Essential for performance on Cell and similar distributed 
memory multicores

// Start transfer for first buffer
id = 0;
mfc_get(buf[id], addr, BUFFER_SIZE, id, 0, 0);
id ^= 1;

while (!done) {
// Start transfer for next buffer
addr += BUFFER_SIZE;
mfc_get(buf[id], addr, BUFFER_SIZE, id, 0, 0);

// Wait until previous DMA request finishes
id ^= 1;
mfc_write_tag_mask(1 << id);
mfc_read_tag_status_all();

// Process buffer from previous iteration
process_data(buf[id]);

}

Cell buffer pipelining example

Get Data

Work

Get Data

Work

Get Data

Work

time
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Communication Patterns

● With message passing, programmer has to 
understand the computation and orchestrate the 
communication accordingly

Point to Point
Broadcast (one to all) and Reduce (all to one)
All to All (each processor sends its data to all others)
Scatter (one to several) and Gather (several to one)
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A Message Passing Library Specification

● MPI: specification
Not a language or compiler specification
Not a specific implementation or product
SPMD model (same program, multiple data)

● For parallel computers, clusters, and heterogeneous 
networks, multicores

● Full-featured

● Multiple communication modes allow precise buffer 
management

● Extensive collective operations for scalable global 
communication
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Where Did MPI Come From?

● Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) 
were not portable (or very capable)

● Early portable systems (PVM, p4, TCGMSG, Chameleon) 
were mainly research efforts

Did not address the full spectrum of issues
Lacked vendor support
Were not implemented at the most efficient level

● The MPI Forum organized in 1992 with broad participation
Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
Portability library writers: PVM, p4
Users: application scientists and library writers
Finished in 18 months
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Point-to-Point

● Basic method of communication between two processors
Originating processor "sends" message to destination processor
Destination processor then "receives" the message

● The message commonly includes
Data or other information
Length of the message
Destination address and possibly a tag

mfc_get(destination LS addr,
source memory addr,
# bytes,
tag,
<...>)

mfc_put(source LS addr,
destination memory addr,
# bytes,
tag,
<...>)

Cell “send” and “receive” commands

network

P1

Memory1

P2

Memory2

data
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Synchronous vs. Asynchronous Messages

● Synchronous send
Sender notified when 
message is received

● Asynchronous send
Sender only knows 
that message is sent

P1

Memory1

P2

Memory2

network

P1

Memory1

P2

Memory2

data

data

network

P1

Memory1

P2

Memory2

data

network

P1

Memory1

P2

Memory2

network

P1

Memory1

P2

Memory2

data

data
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Blocking vs. Non-Blocking Messages

● Blocking messages
Sender waits until 
message is transmitted:
buffer is empty
Receiver waits until 
message is received:
buffer is full
Potential for deadlock

● Non-blocking
Processing continues 
even if message hasn't 
been transmitted
Avoid idle time and 
deadlocks

// DMA back results
mfc_put(data, cb.data_addr, data_size, ...);

// Wait for DMA completion
mfc_read_tag_status_all();  

Cell non-blocking data “send” and “wait”
// SPE does some work
...
// SPE notifies PPU that task has completed
spu_write_out_mbox(<message>);

// SPE does some more work
...
// SPE notifies PPU that task has completed
spu_write_out_mbox(<message>);

Cell blocking mailbox “send”
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Sources of Deadlocks

● If there is insufficient buffer capacity, sender waits until 
additional storage is available

● What happens with this code?

● Depends on length of message and available buffer

P1

Send(…)
Recv(…)

P2

Send(…)
Recv(…)

P1 P2

network 
buffer
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matching send-receive pair

matching receive-send pair

Solutions

● Increasing local or network buffering

● Order the sends and receives more carefully

P1

Send(…)
Recv(…)

P2

Recv(…)
Send(…)

P1

Send(…)
Recv(…)

P2

Send(…)
Recv(…)

blocked since 
buffer is full 
(no progress 
until message 
can be sent)

write message to buffer 
and block until message 

is transmitted 
(buffer becomes empty)
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Broadcast

● One processor sends the 
same information to many 
other processors

MPI_BCAST

A[n] = {…}

B[n] = {…}

Broadcast(B[1..n])

for (i = 1 to n)

// round robin distribute B
// to m processors

Send(A[i % m])

…

for (i = 1 to n)

for (j = 1 to n)

C[i][j] = distance(A[i], B[j])

P1 P2 P3 Pn

M1 M2 M3 Mn



51 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Reduction

● Example: every processor starts with a value and needs to 
know the sum of values stored on all processors

● A reduction combines data from all processors and returns it 
to a single process

MPI_REDUCE

Can apply any associative operation on gathered data
– ADD, OR, AND, MAX, MIN, etc.
No processor can finish reduction before each processor has 
contributed a value

● BCAST/REDUCE can reduce programming complexity and may 
be more efficient in some programs
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Example: Parallel Numerical Integration

4.0

2.0

1.00.0

4.0
(1+x2)

f(x) =

X

static long num_steps = 100000; 

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;
for (i = 0; i < num_steps; i++){

x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
printf(“Pi = %f\n”, pi);

}}
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Computing Pi With Integration (OpenMP)

● Which variables are shared?
step

● Which variables are private?
x

● Which variables does 
reduction apply to?

sum

static long num_steps = 100000; 

void main()
{

int i;
double pi, x, step, sum = 0.0;

step = 1.0 / (double) num_steps;

for (i = 0; i < num_steps; i++){
x = (i + 0.5) ∗ step;
sum = sum + 4.0 / (1.0 + x∗x);

}

pi = step ∗ sum;
printf(“Pi = %f\n”, pi);

}

#pragma omp parallel for \
private(x) reduction(+:sum)
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static long num_steps = 100000; 

void main(int argc, char* argv[])
{

int i_start, i_end, i, myid, numprocs;
double pi, mypi, x, step, sum = 0.0;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &myid);

MPI_BCAST(&num_steps, 1, MPI_INT, 0, MPI_COMM_WORLD);

i_start = my_id ∗ (num_steps/numprocs)
i_end = i_start + (num_steps/numprocs)

step = 1.0 / (double) num_steps;

for (i = i_start; i < i_end; i++) {
x = (i + 0.5) ∗ step
sum = sum + 4.0 / (1.0 + x∗x);

}
mypi = step * sum;

MPI_REDUCE(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

if (myid == 0)
printf(“Pi = %f\n”, pi);

MPI_Finalize();
}

Computing Pi With Integration (MPI)
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Understanding Performance

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication
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Locality in Communication 
(Message Passing)
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Exploiting Communication Locality
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Locality of Memory Accesses
(Shared Memory)

for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11



59 6.189 IAP 2007 MITDr. Rodric Rabbah, IBM.

Locality of Memory Accesses
(Shared Memory)

A[0]
A[4]
A[8]
A[12]

A[1]
A[5]
A[9]
A[13]

A[2]
A[6]
A[10]
A[14]

A[3]
A[7]
A[11]
A[15]

for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

● Parallel computation is 
serialized due to memory 
contention and lack of 
bandwidth
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Locality of Memory Accesses
(Shared Memory)
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for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)
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Locality of Memory Accesses
(Shared Memory)
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A[1]
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A[5]
A[6]
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A[8]
A[9]
A[10]
A[11]

A[12]
A[13]
A[14]
A[15]

for (i = 0; i < 16; i++) 
C[i] = A[i] + ...;

join (barrier)

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 12

i = 13

i = 14

i = 15

fork (threads)

i = 8

i = 9

i = 10

i = 11

memory banks

memory interface

● Distribute data to relieve 
contention and increase 
effective bandwidth
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Memory Access Latency in 
Shared Memory Architectures

● Uniform Memory Access (UMA)
Centrally located memory
All processors are equidistant (access times)

● Non-Uniform Access (NUMA)
Physically partitioned but accessible by all
Processors have the same address space
Placement of data affects performance
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Summary of Parallel Performance Factors

● Coverage or extent of parallelism in algorithm

● Granularity of data partitioning among processors

● Locality of computation and communication

● … so how do I parallelize my program?


