6.189 IAP 2007

Lecture 9

Debugging Parallel Programs

Dr. Rodric Rabbah, IBM. 1 6.189 IAP 2007 MIT



Debugging Parallel Programs is Hard-er

e Parallel programs are subject to the usual bugs
e Plus: new timing and synchronization errors

e And: parallel bugs often disappear when you add
code to try to identify the bug

Dr. Rodric Rabbah, IBM. 2 6.189 IAP 2007 MIT



Visual Debugging of Parallel Programs

e A global view of the multiprocessor architecture
= Processors and communication links

e See which communication links are used
= Perhaps even change the data in transmission

e Utilization of each processor
= Can identify blocked processors, deadlock

e “step” through functionality?
= Lack of a global clock

e Likely won't help with data races

Dr. Rodric Rabbah, IBM. 3 6.189 IAP 2007 MIT



TotalView

— r |_
I kEeep Layout _J Send _I Receive |7 Unexpected Update Close | Help
5
NS
255
255 z
255 =
o
| §
i
] _ -
FAFI_CORAR_ WORLD Ranks Communicators
Hl S BB B S S S S SN SN N SE B BN B EE EEEEm
m[ COmi Tus Zdm Jam Jus Cwi Gam Fem Cum J Sl SR SIS0
N EEEEEE N ESEEEE S EE N EE EEE N EE E EE N FAP_CORARA_WORLD
=i IJ“]]'

Dr. Rodric Rabbah, IBM.

6.189 IAP 2007 MIT



Debugging Parallel Programs

e Commercial debuggers
= [otalView, ...

e The printf approach
e gdb, MPI gdb, ppu/spu gdb, ...

e Research debuggers
= Streamlt Debugger, ...

Dr. Rodric Rabbah, IBM. 5

6.189 IAP 2007 MIT



Streamlt Debugger

# Debug - HelloWorldé.str - Eclipse Platform
Flle Edit Navigate Search Project Run  Streamlt Window Help

(&=l

[ = = alnlE - -%-||® 7% = -

¥ Debug

% Breakpoints

—@m@E| - x

=% Helloworlds [Streamit Application]

=& Helloworlds at localhost: 9105

@), System Thread [Finalizer] {Running)

). System Thread [Reference Handler] (Running)

@y, Thread [main] (Suspended (breakpoint at line 20 in IntPrinter))

: IntPrinker.work() line: 20

i HelloWorlds()

{ 1.8, System Thread [Signal Dispatcher] (Running)

& CiProgram Filesilavatizret 4.2_03bintiavaw.sxe (1111/04 1:16 AM)

¥ @

= [line: 7] - Complesx

& [line: 8] - real

O [line: 9] - imag

© [line: 10] - EightPusher
= [line: 11] - EightPusher
S [line: 12] - %
S [line: 14] - %

Wariables | Broakpoints | Expressions |Display

Helloworlde.str X l‘,gj HelloWarldé. java 3 Overview of Stream Graph

void->int filter IntSource { -

work push 4 {
push {x++) ;
push {x++) ;
push (x++] ;
push {x++) ;

int->void filter IntPrinter {

printipopi});
printipop()):
printipopi});

i
i
int->int filter Fass {
int z;
init {
z = 0;

3
work push 4 pop 4 peek 4 {
push (pop () ) :
push (pop ()]
push (pow ()]
push (pop ()]

int->int pipeline Passer {

/¢ add Pass():
2 Lo

=l Pass (id=51)

furork Executions:
Pop Count

[Peek Count:

Push Count:

ElPass (id=54)

urork Executions:

Pop Count:

Pesk Courit:

Fush Count:

Trput Typ

[output Typ
tream Type:

i

B Console [HelloWworlds at localhost:9105]

B k-84 x

]

u}
1

1

Console |Error Log | Tasks

Dr. Rodric Rabbah, IBM.

6.189 IAP 2007 MIT



Cell Debugger in Eclipse IDE

Debug - dist.c - Eclipse SDK (on slothy
File Edit Refactor MNavigate Search Project Run Window Help

- B e|B s 0 | @ ® @ |G |- iv © o o w3 @ &
%% Debug 33‘ =g Breakpcints Registers | Modules =0
N R A A & L E B §F kT
= 3 spe_create_thread() Ox0fel8168 = v”_ﬂgd Value |

— 2 calc_dist() at /home/dxzhang/workspace/dist/dist.c:36 0x10

=1 main() at /home/dxzhang/workspace/dist/dist.c:55 Ox1000L:
7 U?Thread [2 cell] (Suspended: Breakpoint hit.)

=3 main() at fhome/dxzhang/workspace/dist_spu/dist_spu.c:19

= 2 _start() 0x0000009c

=1 _start() 0x0000009¢

Omm— D)

¢ dist_spu.c [g dist.c 2 \

cb[1].a_addr = (uintptr32_t)&a[NUM_POINTS / 2];
cb[1].b_addr = (uintptr32_t)b;
cb[1].res_addr = (uintptr32_t)&dist[NUM_POINTS / 2];

// Create SPU threads
for (int i = 0; 1 < 2; i++) {

¥ | id[i] = spe_create_thread(0, &dist_spu, &cb[i], NULL, -1, 0});
}

S/ Wait for threads
for (dnt i = 0; 1 < 2; i++) {
spe_wait(id[i], NULL, 0);
}
1

extern void gen_points();
extern void verify_dist();

int =
L i rn hd
J ke 1:1 J

Dr. Rodric Rabbah, IBM. 7 6.189 IAP 2007 MIT



Pattern-based Approach to Debugging

e “Defect Patterns”. common kinds of bugs in parallel
programs

= Useful tips to prevent them
s Recipes for effective resolution

e Inspired by empirical studies at University of
Maryland

= http://fc-md.umd.edu/softwareday//presentations/Session0/Keynote.pdf

e At the end of this course, will try to identify some
common Cell defect patterns based on your
feedback and projects

Dr. Rodric Rabbah, IBM. 8 6.189 IAP 2007 MIT



Defect Pattern: Erroneous Use of
Language Features

Examples

= Inconsistent parameter types for get/send and put/receive

= Required function calls
= Inappropriate choice of functions

Symptoms
= Compile-type error (easy to fix)

= Some defects may surface only under specific conditions
— Number of processors, value of input, alignment issues

Cause

= Lack of experience with the syntax and semantics of new

language features

Prevention
= Check unfamiliar language features carefully

Dr. Rodric Rabbah, IBM. 9

6.189 IAP 2007 MIT



Does Cell have too many functions?

e Yes! But you may not need all of them
e Understand a few basic features

spe_create_t hread
spe_wai t

spe_write_in_nmbox
spe_stat i n_nmbox

spe_read_out nbox
spe_stat _out nbox

spe_wite_signal

spe_get Is
spe_get _ps_area

spe_nfc_get
spe_nfc_put
spe_nfc_read_tag_status

spe_create_group
spe_get event

Dr. Rodric Rabbah, IBM.

nf c_get

nf c_put

nfc_stat _cnd_queue

nfc wite tag_mask

nfc read tag _status_all/any/i nmedi ate

spu_read_i n_mnbox
spu_stat i n_mbox

spu wite out nbox, spu wite out intr_nbox
Sspu_stat out nbox, spu_stat _out intr_nbox

spu_read_signal 1/ 2
spu_stat _signal 1/2

spu_wite_event mask
spu_read _event status
spu_stat _event _status
spu wite event ack

spu_read_decrenenter
spu_wite _decrenenter

10 6.189 IAP 2007 MIT



Defect Pattern: Space Decomposition

e Incorrect mapping between the problem space and the
program memory space

e Symptoms
=  Segmentation fault (if array index is out of range)
= Incorrect or slightly incorrect output

e (Cause

= Mapping in parallel version can be different from that in serial
version
— Array origin is different in every processor

— Additional memory space for communication can complicate the
mapping logic

e Prevention
= Validate memory allocation carefully when parallelizing code

Dr. Rodric Rabbah, IBM. 11 6.189 IAP 2007 MIT



Example Problem

A sequence of N cells

~
~ -
N~ -~ -
- -
e —— _—-—

e N cells, each of which holds an integer [0..9]
m cell[0]=2, cell[1]=1, .., cell[N1]=3
e In each step, cells are updated using values of neighboring cells
m cellnext[x] = (cell[x-1] + cell[x+1]) nod 10
m cellnext[0]=(3+1), cellnext[1l]=(2+6),
= Assume the last cell is connected to the first cell
e Repeat for steps times

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 12 6.189 IAP 2007 MIT



Sequential Implementation

e Approach to implementation
= Use an integer array buf f er [ ] for current cell values

= Use a second array next buf f er[] to store the values
for next step

= Swap the buffers

Dr. Rodric Rabbah, IBM. 13 6.189 IAP 2007 MIT



Sequential C Code

[* Initialize cells */
int X, n, *tnp;

I nt *buffer = (int*)mall oc(N * sizeof (int));
int *nextbuffer = (int*)malloc(N * sizeof(int));
FILE *fp = fopen("input.dat", "r");

if (fp == NULL) { exit(-1); }
for (x =0; x <N, x++) { fscanf(fp, "%", &buffer[x]); }
fclose(fp);

/[* Main |oop */
for (n = 0; n < steps; n++) {
for (x = 0; x <N, x++) {
nextbuffer[x] = (buffer[(x-1+N) %\ +tbuffer[(x+1)%N) % 10;

}
tnp = buffer; buffer = nextbuffer; nextbuffer = tnp;

}
[* Final output */

free(nextbuffer); free(buffer);

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 14 6.189 IAP 2007 MIT



Approach to a Parallel Version

e Each processor keeps 1/size cells
= Size = number of processors

r---
|

e Each processor needs to:
= update the locally-stored cells

= exchange boundary cell values between
neighboring processes Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 15 6.189 IAP 2007 MIT



DeCOmpOSItIOn Where are the bugs?

N / size;
(itnt*)mall oc((nlocal +2) * sizeof(int));
(int*)mall oc((nlocal +2) * sizeof(int));

nl ocal
buf f er
next buf f er

[* Main | oop */
for (n = 0; n < steps; n++) {
for (x = 0; x < nlocal; x++) {
nextbuffer[x] = (buffer[(x-1+N) %N +buffer[(x+1)%N]) % 10;
}

/| * Exchange boundary cells with nei ghbors */

tnp = buffer; buffer = nextbuffer; nextbuffer t np;

}

buffer]]

r--- -

0 (nl ocal +1)

Example adapted from
Taiga Nakamura
Dr. Rodric Rabbah, IBM. 16 6.189 IAP 2007 MIT



DeCOmpOSItIOn Where are the bugs?

N/ size; N may not be divisible by size
(itnt*)mall oc((nlocal +2) * sizeof(int));
(int*)mal |l oc((nlocal +2) * sizeof (int));

nl ocal
buf f er
next buf f er

[* Main | oop */
for (n = 0; n < steps; n++) {
for (x—=0—x<-nteeal—x++) { (X = 1; X < nlocal +1; Xx++)
nextbuffer[x] = (buffer[(x-1+N) %N +buffer[(x+1)%N]) % 10;
}

/| * Exchange boundary cells with nei ghbors */

tnp = buffer; buffer = nextbuffer; nextbuffer t np;

}

buffer]]

r--- -

0 (nl ocal +1)

Example adapted from
Taiga Nakamura
Dr. Rodric Rabbah, IBM. 17 6.189 IAP 2007 MIT



Defect Pattern: Synchronization

e Improper coordination between processes
= Well-known defect type in parallel programming
s Deadlocks, race conditions

e Symptoms
= Program hangs
= Incorrect/non-deterministic output

e Causes
= Some defects can be very subtle

= Use of asynchronous (non-blocking) communication can lead
to more synchronization defects

e Preventions
= Make sure that all communication is correctly coordinated

Dr. Rodric Rabbah, IBM. 18 6.189 IAP 2007 MIT



Communication Where are the bugs?

/[* Main | oop */
for (n = 0; n < steps; n++) {
for (x = 1; x < nlocal +1; x++) {
nextbuffer[x] = (buffer[(x-1+N) %N +buffer[ (x+1)%N]) % 10;

}
/ * Exchange boundary cells with nei ghbors */
recei ve (&next buffer[ 0], (rank+si ze- 1) %si ze) ;
send ( &next buffer[nlocal], (rank+1) %si ze) ;
recei ve (&next buffer[nlocal +1], (rank+l) %si ze);
send (&next buffer[1], (rank+si ze-1) %si ze) ;
tnmp = buffer; buffer = nextbuffer; nextbuffer = tnp;
}
e Deadlock : __ I | 1 |
rl'l | $1

(nl ocal +1)

(@]

Example adapted from
Taiga Nakamura
Dr. Rodric Rabbah, IBM. 19 6.189 IAP 2007 MIT



Modes of Communication

e Recall there are different types of sends and
receives

= Synchronous
= Asynchronous
= Blocking

= Non-blocking

e Tips for orchestrating communication
s Alternate the order of sends and receives

= Use asynchronous and non-blocking messages
where possible

Dr. Rodric Rabbah, IBM. 20 6.189 IAP 2007 MIT



Defect Pattern: Side-effect of
Parallelization

e Ordinary serial constructs may have unexpected side-effects
when they used concurrently

e Symptoms
= Various correctness and performance problems

e Causes
s Sequential part of code is overlooked

= Typical parallel programs contain only a few parallel
primitives, and the rest of the code is a sequential program
running many times

e Prevention
= Don't just focus on the parallel code

= Check that the serial code is working on one processor, but
remember that the defect may surface only in a parallel
context

Dr. Rodric Rabbah, IBM. 21 6.189 IAP 2007 MIT



Data I/O in SPMD Program Where are the bugs?

[* Initialize cells wwth input file */

fp = fopen("input.dat", "r");

if (fp == NULL) { exit(-1); }

nskip = ...

for (x = 0; x < nskip; x++) { fscanf(fp, "%l", &Jdummy); }

for (x = 0; x <nlocal; x++) { fscanf(fp, "%l", &buffer[x+1]);}
fclose(fp);

[* Main | oop */

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 22 6.189 IAP 2007 MIT



Data I/O in SPMD Program Where are the bugs?

[* Initialize cells wwth input file */

fp = fopen("input.dat", "r");

if (fp == NULL) { exit(-1); }

nskip = ...

for (x = 0; x < nskip; x++) { fscanf(fp, "%l", &Jdummy); }

for (x = 0; x <nlocal; x++) { fscanf(fp, "%l", &buffer[x+1]);}
fclose(fp);

[* Main | oop */

e File system may cause performance bottleneck if all
processors access the same file simultaneously

e Schedule I/O carefully

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 23 6.189 IAP 2007 MIT



Data I/O in SPMD Program Where are the bugs?

[* Initialize cells wwth input file */
I f (rank == MASTER) {
fp = fopen("input.dat", "r");
I f (fp == NULL) { exit(-1); }
for (x = 0; x <nlocal; x++) { fscanf(fp, "%l", &buffer[x+1]);}
for (p =1, p < size; p++) {
/* Read initial data for process p and send it */

}
fclose(fp);

}

el se {
/* Receive initial data*/

}

e Often only one processor (master) needs to do the I/O

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 24 6.189 IAP 2007 MIT



Generatlng Initial Da.ta. Where are the bugs?

[* What if we initialize cells wth random val ues... */
srand(ti me( NULL) ) ;
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;

}

[* Main | oop */

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 25 6.189 IAP 2007 MIT



Generatlng Initlal Da.ta. Where are the bugs?

[* What If we initialize cells wth random val ues... */

stane{t-reNIEE) )+ srand(time(NULL) + rank);
for (x = 0; x < nlocal; x++) {

buffer[x+1] = rand() % 10;
}

[* Main | oop */

e All processors might use the same pseudo-random seed
(and hence sequence), spoiling independence

e Hidden serialization in rand() causes performance
bottleneck

Example adapted from

Taiga Nakamura
Dr. Rodric Rabbah, IBM. 26 6.189 IAP 2007 MIT



Defect Pattern: Performance Scalability

e Symptoms
= Sub-linear scalability
= Performance much less than expected
= Most time spent waiting

e Causes
= Unbalanced amount of computation
= Load balancing may depend on input data

e Prevention
= Make sure all processors are “working” in parallel
= Profiling tools might help

Dr. Rodric Rabbah, IBM. 27 6.189 IAP 2007 MIT



Summary

e Some common bugs in parallel programming
= Erroneous use of language features
s Space decomposition
= Side-effect of parallelization
= Synchronization
= Performance scalability

e There are other kinds of bugs as well: data race

Dr. Rodric Rabbah, IBM. 28 6.189 IAP 2007 MIT



Comment on Data Race Detection

e Trace analysis can help
= EXxecute program

= Generate trace of all memory accesses and
synchronization operations

= Build a graph of orderings (solid arrows below) and
conflicting memory references (dashed lines below)

= Detect races (when two nodes connected by dashed
lines are not ordered by solid arrows)

e Intel Thread Checker is an example
s More tools available for automatic race detection

Dr. Rodric Rabbah, IBM. 29 6.189 IAP 2007 MIT



Trend in Debugging Technology

e Trace-based
e Checkpointing
e Replay

e One day... you'll have the equivalent of TiVo for
debugging your programs

Dr. Rodric Rabbah, IBM. 30 6.189 IAP 2007 MIT



