:;-;'f; Cell BE Monte Carlo

Library APl Reference Manual
Version 1.0 (beta)

O

© Copyright IBM Corporation 2007. All rights reserved.

Table of Contents

PREFACE oottt et e et a e e re e iv
About this puUblICatioN ... iv
Intended QUAIENCEoeeei e v
Conventions and terminologyccooeeeieii i v

Typographical CONVENTIONSccouuiiiiiiiii e %
Prerequisite and related information................ooiii i %

Chapter 1. Cell BE Monte Carlo Library Introductionccoevvvvviienneennn. 2
(7 0] g To7=T o] (=R 3
I3 3
e R 3
e 3
Random NUMDET e 3

Physical-Random NUMDEr...........cooo e 3

Pseudo-Random NUMDET ... e 3

Quasi-Random NUMDET............ouiiii e 3
1 L R 3
SPEE 3
SPU 4
Random Number Generatorsuuuuuueuiiuiiiiiiiiiiiii e 4
Hardware-generatedeueuuuieiiiiiiii 4
KirkpatriCk=-StOll (KS)ueeiee e e e 4
Mersenne TWISTEr (IMT)ueuiiiieiiiiiiie s 4
SOOI .. 4
TransfOrMAatiONScoo i 4
BOX-MUIIEr (BM) ... e e e e e e e e e e e aaeeees 4
MOrO’S INVEISION (M) 5
Polar Method (PO) ... e e e e e 5
Selecting a Random Number Generator ... 5
LIMITAEIONS .. 6

Chapter 2. Installing and Configuring Cell BE Monte Carlo Library............ 8

Chapter 3. Programimingcouuuiiiiiee e e e e e e e e e e 10

Chapter 4. Programming for Cell BE............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 11

Chapter 5. Random Number GENeratorsccceeeeevivvviiiiiiiiee e 13
Random Number Initialization ... 13

MC_rand_ W _iNit 14
MC_raNd_KS TNt ..o e 15
MC_rand_ Mt Nt 16
MC_rand_Sb NIt ... 17
MC_rand _Sb SEEd ... 20
Random Number Generationcoooo i 21
(o =1 T 1D, G T PP 22
MC_rand_XX _array U4ccoooiiii et e et e e e e eaa e e e eraans 23
MC_rand_XX 0 t0 1 d2 .. 24
mc_rand_XX 0 to 1 array d2........ccooeiiiiiiiiiieee e 25

mMc_rand_XX_minus1 10 1 d2....cccoorii e 27

mc_rand_XX _minus1 _to 1 array d2cccoooeiiiiiiiiiiiiie e, 28
MC_rand_XX 0 t0 1 f4 30
mc_rand XX 0 to 1 array fh ... 31
mc_rand_XX_minust 10 1 fA.. ... 33
mc_rand_ XX _minus1 to 1 array f4 ... 34
Chapter 6. TransSformationsScoiiii i i e 36
MC_transform_bm 4. ... 37
mc_transform_bm_array ... 38
mc_transform_bm d2.......... 39
mc_transform_bm_array d2............oooriii 40
MC_transform_mi _f4 ... 41
mc_transform_mi_array f4 ... 42
MC_transform_mi d2 ... 43
mc_transform_mi_array _d2.........ccooooriiiiiiii 44
MC_transform PO _fA ... 45
MC_transform_po_array ... 46
mc_transform_reject_ po_array f4.........cciiiiiiiii 47
MC_transform_po_d2........ooo 49
mc_transform_po_array d2............cooooiiiiiiiii e 50
mc_transform_reject_po_array d2...........oiiiiiiiiiiiiic e 52
AppendixX A, EXAMPIES ..o 55
Hardware-Generated EXamplecooovreiiiiiiiiee e 56
Kirkpatrick-Stoll EXampleouuieieieeeeeecee e 58
Mersenne Twister EXampleoooii oo 60
SODOI EXAMPIE...... e 61
Box-Muller EXample.........coooiiee e 66
Moro’s Inversion EXample...........cooooeiiiiiiiiiiieeeeeeee e 68
Polar Method EXample ... 70
Appendix B. Getting Help or Technical Assistance.............cccceeeeeeeeeveennnnn. 73
Using the Documentationeuuiiiiiiiiiiiiiii e 73
Getting Help and Information from the World Wide Web............cccccvvvnee. 73
1070 a1 =Tox (] To 1211V IS TUT o] oo AR 74
Appendix C. ACCESSIDIITY ..ccoeeeiiieeeee s 75
APPENdIX D, NOUICES ..o 77
Code License and Disclaimer Information.............cccoooeoii, 77

I = o [T g = TSR 77

PREFACE

About this publication

This document is the application programming interface (API) specification for
the Cell Broadband™ (BE) Monte Carlo betalibrary provided in the IBM™ Cell
Broadband Engine Software Development Kit (SDK). Thislibrary contains APIs
to produce random numbers and perform distribution transformations on groups
of numbers.

Thelibrary contains 4 random number generation (RNG) algorithms (hardware-
generated, Kirkpatrick-Stoll, Mersenne Twister, and Sobol), 3 distribution
transformations (Box-Muller, Moro’s Inversion, and Polar Method), and two
Monte Carlo simulation samples (calculations of pi and the volume of an n-
dimensional sphere).

This document provides a detailed description of the APIsin their library and
their use. Using thisinformation, programmers on the Cell BE platform should
be ableto utilize the library to perform Monte Carlo simulations.

Specificaly, the book covers the following sections:

e Chapter 1, “Cell BE Monte Carlo Library Introduction,” on page 2
describes the various random number and transformation algorithms.

e Chapter 2, “Installing and Configuring Cell BE Monte Carlo Library,” on
page 8 addresses package installation.

e Chapter 3, “Programming,” on page 10 covers basic programming setup
for using the library.

e Chapter 4, “Programming for Cell BE,” on page 11 documents platform
unique restrictions for the library.

e Chapter 5, “Random Number Generators,” on page 13 details the
individual RNG APIs.

e Chapter 6, “Transformations,” on page 36 describes the distribution
transformation APIs.

Intended audience

This book provides details needed by software engineers and programmers.
Specifically, it details random number generators and distribution transforms
available with the Cell BE SDK on hardware platforms running the Cell
Broadband Engine.

Conventions and terminology

Typographical conventions

The following table explains the typographical conventions used in this
document.

Table 1. Typographical Conventions

Typeface Indicates Example

Bold L owercase commands, If you specify -O3, the
executable names, compiler compiler assumes -
options and directives. ghot=level=0. To prevent all

HOT optimizations with -O3,
you must specify -gnohot.

Italics Parameters or variableswhose | Make sure that you update the
actual names or values are to Size parameter if you return
be supplied by the user. Italics | more than the size requested.
are also used to introduce new

terms.

monospace | Programming keywords and If one or two cases of a
library functions, compiler switch statement are
built-in functions, examples of | typically executed much more
program code, command frequently than other cases,

strings, or user-defined names. | break out those cases by
handling them separately
before the switch statement.

Prerequisite and related information

The IBM Cell BE SDK 3.0 includes the Cell BE Monte Carlo library. The SDK
should be installed prior to installing the library.

SDK installation documentation can be found in the Software Devel opment Kit
3.0 Installation Guide available at the Cell Broadband Engine Resource Center
developerWorks™ website, http://www-128.ibm.com/devel operworks/power/cell.

Additional documentation pertaining to the SDK development environment can
be found at this website—the Cell Broadband Engine Programming Tutorial and
the Cell Broadband Engine Programming Handbook.

http://www-128.ibm.com/developerworks/power/cell

Partl. Overview

Chapter 1. Cell BE Monte Carlo Library

Introduction

Random numbers generation and distribution transformation occur widely in
many scientific and engineering applications for simulating random processes and
statistical methods. Common applications for these numbers include | otteries and
encryption key generation.

The Cell BE Monte Carlo Library provides two types of interfaces commonly
used in Monte Carlo simulations — random number generators (RNGs) and
distribution transformations.

The RNG algorithms implemented include:
1. Hardware-based
2. Kirkpatrick-Stoll
3. Mersenne Twister
4. Sobol
Additionally, the following transforms are a so provided:
1. Box-Muller
2. Moro'slInversion
3. Polar Method

This SPU-only library generally providesinterfacesin C and C++ to perform the
operations—random number generation or distribution transformation—on either
asingle vector or an array of vectors.

Random numbers can be created of the following types:
e 32bitinteger (unsigned int)

e 32 bit single-precision floating point (f1oat) with arange of (0 to 1]—
from zero up to, but not including one.

e 32 hit single-precision floating point (£ loat) with arange of [-1to 1] —
from, but not including minus one up to, but not including one.

e 64 bit double-precision floating point (double) with arange of (O to 1]
—from zero up to, but not including one.

e 64 bit double-precision floating point (double) with arange of [-1to 1]
—from but not including minus 1 up to, but not including one.

Distribution transformations are provided for types both single- and double-
precision floating point values (f1oat and double).

Concepts

The following sections explain the main concepts and terms used in the Cell BE
Monte Carlo library.

DMA

Direct Memory Access. A technique for using a special-purpose controller to
generate the source and destination addresses for amemory or /O transfer.

PPE

PowerPC™ Processor Element. The general-purpose processor in the Cell BE
processor.

PPU

PowerPC Processor Unit. The part of the PPE that executes instructions from its
main memory.

Random Number
A number obtained by chance.

Physical-Random Number
A random number obtained by sampling some physical object, such asadie.

Pseudo-Random Number

A number obtained by some defined arithmetic process, but is effectively a
random number for the purpose for which it is required.

Quasi-Random Number

A random number also defined by an arithmetic process which compromises
statistical randomness to obtain uniform distribution across the domain of
potential values during its arithmetic sequence.

RNG

Random Number Generator. A program or library which returns random
numbers.

SPE

Synergistic Processor Element. Extends the PowerPC 64 architecture by acting as
cooperative offload processors (synergistic processors), with the direct memory
access (DMA) and synchronization mechanisms to communicate with them
(memory flow control), and with enhancements for real-time management. There
are 8 SPEs on each Cell BE processor.

SPU

Synergistic Processor Unit. The part of an SPE that executes instructions fromits
local store (LS).

Random Number Generators

Hardware-generated

The hardware random number generator (HW RNG) samples hardware on Cell
BE platform to generate its value. This physical RNG represents the closest
interface to being truly random. No seed value is required and the resulting
sequence does not have a predictable pattern.

Kirkpatrick-Stoll (KS)

The KS-RNG represents a quick and efficient implementation of a pseudo-
random number generator. This RNG maintains a small set of working data and
strives for linear independence among the generated numbers.

Mersenne Twister (MT)

The MT method for generating pseudo-random numbers al so represents another
fast and flexible approach to random-number generation.

The MT has aproven period of 2*(19937-1) with negligible serial correlation.
The algorithm generates numbers using a twisted feedback shift register.

Sobol

The Sobol RNG represents the only quasi-random number generator in the
library. Unlike pseudo-random number generators which strive for statistical
randomness in its number, this RNG works for even distribution of numbers
across the domain.

This implementation of the Sobol agorithm uses an application-provided
initialization table and a large working data area to generate numbers extremely
quickly.

Transformations

Box-Muller (BM)

The Box-Muller transformation converts a uniform distribution (0, 1] to anormal
distribution with an expectant value of 0.

For the array interfaces, this transform returns two vectors for every input vector.
For the vector interface, only a single vector is returned.

The general formulafor the transformation of two input random numbers n; and
n, are asfollows:

t1=+-2In (1 -n1) cos(21T ny

to=~-21In (1-n1)sin(21 ny)

Moro’s Inversion (Ml)

Like Box-Muller, the MI transform converts a uniform distribution (0,1] to a
normal distribution £1oat and double datatypes. Thisagorithmisthe
simplest of the distribution transformations, returning one transformed value for
each input value.

Polar Method (PO)

The Polar Method is a derivative method of the Box-Muller transformation. This
method also converts a uniform distribution (0,1] to anormal distribution of
float and double datatypes. However, this method uses an accept-reject
algorithm that generally produces fewer points, unless additional RNGs are
generated.

The generalized formulas for the Polar Method uses two input random numbers n;
and nyasfollows:

q=(2n;-1)? + (2n, -1)?

If g>1orq=0, the numbers are rejected and another pair isused. If not, the
following formulas generate the pair of transformed valuest; and t,.

p=1N-2In(q)/q
t1 =(2n1-1)*p
to=(2n2-1)*p

In general, this method transforms data in a quicker fashion due to the substitution
of onedivision for one multiplication and one trigonometric function.

Selecting a Random Number Generator

Applications requiring random numbers generally select the specific algorithm
based upon their individual requirements and their knowledge of various
algorithms.

When users are unfamiliar with the specific RNG algorithms, the following
summary of the algorithms should be considered:

Table 2 Random Number Generator Comparisons

Algorithm L ocation Size Speed Randomness

libmisc rand() PPU & SPU Smallest Moderate Pseudo

Hardware SPU Small Slowest Physical
Kirkpatrick-Stoll ~ SPU Moderate Fast Pseudo
Mersenne Twister SPU Moderate Moderate Pseudo
Sobol SPU Largest Fastest Quas
Limitations
The hardware-generated random number generator has the following limitations
on its values:

Table 3 Hardwar e-Generated Random Number Limitations

Number of
Uniformly
Distributed
Function(s) Values Special Notes
mc rand hw u4, 932
mc rand hw array u4
mc_rand hw 0 to 1 f4 The least significant
mc_rand hw 0 to 1 array f4 222 bit (Isb) of the

mantissais aways0

mc_rand hw minusl to 1 f4 The 2 Isb's of the

221

mc rand hw - mlnusl to 1 _array f4 mantissa are always 0
mc_rand hw 0 to 1 d2 051 Thelsb of the

mc_ rand hw 0 to 1 _array d2 mantissais always 0
mc_rand hw minusl to 1 d2 250 The 2 Isb's of the
mc rand hw mlnusl to 1 _array d2 mantissa are always 0

Part Il. Configuring Cell BE Monte Carlo
Library

Chapter 2. Installing and Configuring Cell BE
Monte Carlo Library

Installation and configuration of the Cell BE Monte Carlo library occurs after the
SDK has been installed using the ce11sdk script in the Cell BE SDK.

For details on installing the SDK, see the “Installing the SDK” section of the
Software Development Kit 3.0 Installation Guide available at the Cell Broadband
Engine Resource Center developerWorks website, http://www-
128.ibm.com/devel operworks/power/cell.

Once the SDK installation is complete, users wanting to develop with the library
can ingtall it directly with the following command:

yum install rpm file name

Customers developing their applications natively on Cell BE platforms should use
an rpm_file_name of libmc-rand-devel.3.0-1.ppc.rpm. Customers developing
on non-Cell BE platforms, should use rpm file_name of libmc-rand-cr oss-
devel.3.0-1.ppc.rpm.

Graphical installation can be accomplished by using the cellsdk -gui
install command and then selecting the appropriate RPM.

http://www-128.ibm.com/developerworks/power/cell
http://www-128.ibm.com/developerworks/power/cell

Part Ill. Programming with Cell BE Monte
Carlo Library

Chapter 3. Programming
To use the random number generators and transformsin the libmc_rand library,
SPU programs should include the following statement:

#include <mc rand.h>

The program’s M akefile must also include the following statements to ensure
linkage of the appropriate libraries:

INCLUDE = $ (SDKPRINC)
LIBRARY += $ (SDKPRLIB)

IMPORTS += -lmc_rand

Additionally, portions of the library have dependencies on the smdmath library.
If the using program is not already including thislibrary at link time, the
following statement should be added to the M akefile:

IMPORTS += -lsimdmath

Programs running on the PPU and wishing to utilize the Sobol RNG algorithm on
an SPU will also need the following include statement:

#include <mc rand sb.h>

No additional changes are needed to the M akefile for the PPU modules.

10

Chapter 4. Programming for Cell BE

The code provided in this design supports the same environments as the Cell BE
SDK.

Although not explicitly prevented, al code except the Hardware RNG would
function correctly on other Cell hardware such as the Sony™ PS3™. Detection
of this environment is facilitated by an initialization routine for the Hardware
RNG that returns a value indicating success or failure. The following table
summarizes this limitation:

Table 4 Support Environments of the Hardwar e Random Number Gener ator

Secure | Execution State | HW RNG Comment

CBE

No | solated - Non-supported state

No Non-isolated Availlable IBM Blade

Yes |solated Availlable Non-accessible state in current
HW offerings

Yes Non-isolated Not Available | PS3

For more details, see the “Return Values’ subsection of themc_rand_hw _init AP
on page 14.

11

Part IV.Cell BE Monte Carlo Library API
Reference

The following sections define the APIs found in the [ibmc_rand library.

12

Chapter 5. Random Number Generators

Two sets of APIs are generally provided with random number generators—
initialization routines and random number generation routines. The following
sections detail the interfaces provided in the Cell BE Monte Carlo Library.

Random Number Initialization

Each random number generator implementation has an initialization routine with
its unique set of parameters. Before invoking any random number generation
routines, the implementation-specific initialization routine should be called.
Failure to do thiswill result in apoor variation of random numbers.

The following sections detail the random number initialization APIs.

13

mc_rand_hw_init
This interface initializes the hardware-generated random number generator.

Description

Verify and initialize the operating environment of the HW RNG. Indicate
supported environment.

Syntax
int mc_rand_hw_init (void);

Parameters
None

Return Values

0 The environment supports the hardware-generated RNG.
<0 The HW RNG is not supported in this environment.
Example

See Hardware-Generated Example on page 56.

Notes

The return value from the initialization routine must be checked. Execution of the
RNG in an unsupported environment will result in random numbers of zero.

See Also

mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23),

mc_rand_XX 0 to 1 d2 (page24), mc rand XX 0 to 1 array_d2 (page 25),
mc_rand_XX_minusl to 1 d2 (page 27), mc_rand XX_minusl to 1 array d2
(page 28), mc_rand XX 0 to 1 f4 page 30), mc_rand_ XX 0 to 1 array f4
(page 31), mc_rand_XX_minusl _to 1 f4 (page 33), and
mc_rand_XX_minusl_to 1 array f4 (page 34) for related APIs.

Table 4 Support Environments of the Hardware Random Number Generator on
page 11 for support environment details.

14

mc_rand_ks_init
Thisinterface initializes the Kirkpatrick-Stoll random number generator.

Description
Initialize the operating environment of the KS RNG.

Syntax

void mc_rand_Kks init (unsigned int seed);
Parameters
[seed [IN] | Aniinitidization value for the RNG.

Return Values
None

Example
See Kirkpatrick-Stoll Example on page 58.

Notes

The initialization routine must be called prior to generating any random numbers.
Failure to initialize the RNG will result in random number values of zeros.

See Also

mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23),

mc_rand_XX 0 to 1 d2 (page24), mc rand XX 0 to 1 array d2 (page 25),
mc_rand_XX_minusl to 1 d2 (page 27), mc_rand XX _minusl to 1 array d2
(page 28), mc_rand XX 0 to 1 f4 page 30), mc_rand_ XX 0 to 1 array f4
(page 31), mc_rand_XX_minusl _to 1 f4 (page 33), and
mc_rand_XX_minusl_to 1 array f4 (page 34) for related APIs.

15

mc_rand_mt_init
Thisinterface initializes the Mersenne Twister random number generator.

Description
Initialize the operating environment of the MT RNG using the seed provided.

Syntax

void mc_rand_mt_init (unsigned int seed);
Parameters
[seed [IN] | Aniinitidization value for the RNG.

Return Values
None

Example
See Mersenne Twister Example on page 60.

Notes

The initialization routine must be called prior to generating any random numbers.
Failure to initialize the RNG will result in random number values of zeros.

See Also

mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23),

mc_rand_XX 0 to 1 d2 (page24), mc rand XX 0 to 1 array _d2 (page 25),
mc_rand_XX_minusl to 1 d2 (page 27), mc_rand XX _minusl to 1 array d2
(page 28), mc_rand XX 0 to 1 f4 page 30), mc_rand_ XX 0 to 1 array f4
(page 31), mc_rand_XX_minusl _to 1 f4 (page 33), and
mc_rand_XX_minusl_to 1 array f4 (page 34) for related APIs.

16

mc_rand_sb_init
Thisinterface initializes the Sobol random number generator.

Description
Initialize the operating environment of the SB RNG using the seed provided.

Syntax

int mc_rand_sb_init (sobol_cntrlblk * p_control, unsigned int
count_max_size, unsigned int dimension, vector unsigned char * p_memory,
unsigned int size_of_memory);

Parameters

p_control [IN] | Specifiesthe control block that containsinformation
about the direction table in main memory.

The user must define this variable as data type

sobol cntrlblck t asdefinedinthe

mc_rand sb.h header file.

count max size | Definesthe size of an array of vectorsthat can befilled
[IN] with vectors of RNs.

Whenusingthemec rand sb xx array yy(
unsigned int count, vector <datatype>
** p array) APIs, the count parameter must never
exceed the value of count_max_size.

When using the single vector versions (vector
<datatype> mc_rand sobol xx (void)), set
count_max_size = 1. However, larger count_max_size
increases the performance of multiple callsto the single
vector version of the RNG.

dimension [IN] | Definesthe dimension of the random numbers.

The maximum value of dimension depends on the
initialization table. If a value above the maximum value
is specified the initialization procedure will be aborted.
The maximum value of dimension is defined by the
direction table and is specified in the

sobol cntrlblk t asvariableu32TableDimension.
p_memory [IN] | Definesapointer tothe memory the RNG need to hold
the lookup tables and to buffer RNs.

The required amount of memory in bytesis equal to 640
times the dimension size.

For needed amount of memory refer to the “Notes”
section below.

size of memory | Definesthe size of the memory to which p_memory
[IN] points.

The initialization procedure verifiesif the amount of
memory is sufficient and aborts if the memory istoo

| | small.

Return Values

0 Initialization successful. No error.

2 Error. Requested dimension parameter value is greater than the
maximum dimension of the look-up table in the p_control
structure.

4 Error. Requested dimension parameter valueis lessthan 1.

8 Error. Look-up table supports random numbers with less than 1 bit
only.

16 Error. Look-up table supports random numbers with more than 32
bits

512 Error. Passed memory area pointed to by p_memory is too small.

Example

See Sobol Example on page 61.

Notes

The sobol cntrlblk t isakey structurein the function of the Sobol RNG.
The definition of this structure can be found in
/opt/cell/sdk/prototype/usr/spu/include/mc_rand_sh.h for SPU programs and
/opt/cell/sdk/prototype/usr/include/mc_rand_sh.h for PPU programs.

An example of how to initialize this structure can be found in
/opt/cell/sdk/prototype/src/examples/monte-carl o/sphere/sobol _init_30 40.h.

Additionally, key defines are provided in the mc_rand_sb.h file as default values:

e SOBOL_RUNS
Defines the maximal number of elements an array of random number
vectors can have. Defaultsto 112,

e SOBOL DIMENSION
Defines the dimension of the created RNs. Defaults to 40.

e SOBOL VECTOR ARRAY SIZE
Calculates the size of the vector array needed as the p_memory parameter.

It is strongly recommended that users to change the default for SOBOL_RUNS
and SOBOL _DIMENSION by using the following code:

#undef SOBOL_RUNS
#define SOBOL RUNS xxxX

#undef SOBOL DIMENSION
#define SOBOL DIMENSION yyy

Where xxx and yyy are appropriate numbers.

18

Instead of using the SOBOL. VECTOR_ARRAY SIZE literal, users can manually
calcul ate the needed amount of memory by keeping in mind that the following
formula:

<memory needed> = ((<number of runs> +76) * <dimensions> +8) * 16.

See Also

mc_rand_XX_u4 (page 22), mc_rand XX_array_u4 (page 23),
mc_rand XX 0 to 1 d2 (page 24), mc_rand XX 0 to 1 array d2 (page 25),
mc_rand_XX_minusl to 1 d2 (page 27), mc_rand XX _minusl to 1 array d2
(page 28), mc_rand XX 0 to 1 f4 page30), mc rand XX 0O to 1 array f4
(page 31), mc_rand_XX_minusl _to 1 f4 (page 33), and

mc_rand XX _minusl to 1 array f4 (page 34) for related APIs.

19

mc_rand_sb_seed
This interface seeds the Sobol random number generator.

Description

Seed the Sobol RNG with the specified value. This seed value represents the
index into the Sobol sequence of random numbers.

Syntax
void mc_rand_sb_seed (unsigned int seed);
Parameters
seed [IN] Index into the RNG sequence. This number should be

evenly divisible by 4. If anon-multipleis provided, the
value of seed will be truncated to the previous multiple
of 4.

Return Values
None

Example
See Sobol Example on page 61.

Notes
The Sobol RNG defaults to a seed of O after invocation of

mc_rand sb init ().

See Also
mc_rand_sb_init (page 17) for related API.

20

Random Number Generation

Random number generation interfaces provided with the Cell BE Monte Carlo
library have consistent APIs across all implementation for acommon data type.
In general, these interfaces can be divided into routines to return single vectors or
an array of vectors.

The following sections define the random number generation APIs.

21

mc_rand XX u4

Thisinterface is generic across all RNG implementations. The value of “XX” will
be“hw’ for Hardware, “ks” for Kirkpatrick-Stoll, “nt ” for Mersenne Twister,
and “sb” for Sobol.

Description

Return one random number vector of type unsigned integers with each function
call.

Syntax
vector unsigned int mc_rand_hw_u4 (void);

vector unsigned int mc_rand_ks u4 (void);
vector unsigned int mc_rand_mt_u4 (void);
vector unsigned int mc_rand_sb_u4 (void);

Parameters
None

Return Values

Random Random number vector of 4 unsigned integers
numbers

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand XX _array ud(page 23) for related APIs.

mc_rand_hw_init (page 14), mc_rand_ks init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

22

mc_rand_XX_array u4

Thisinterface is generic across most RNG implementations with a slight variation
for Sobol. The value of “XX” will be “hw’ for Hardware, “ks” for Kirkpatrick-
Stoll, “nt ” for Mersenne Twister, and “sb” for Sobol.

Description

Return an array of random number vectors of type unsigned integers with each
function call.

For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces,
the random numbers are returned into the array specified by the user. For Soboal,
the pointer with the random numbers is returned by the random number generator.

Syntax
void mc_rand_hw_array_u4 (unsigned int count, vector unsigned int *array
);
void mc_rand_ks array_u4 (int count, vector unsigned int *array);
void mc_rand_mt_array_u4 (int count, vector unsigned int *array);

vector unsigned int *mc_rand_sb_array_u4 (int count);

Parameters
count [IN] The number of random number vectors to return.
array The pointer to the memory location where the random
[IN/OUT] numbers should be generated. This parameter applies

only to the HW, KS, and MT RNGs.

Return Values

Random Anarray of random number vectors with 4 unsigned integers. For

numbers the HW, KS, and MT RNGs, these numbers are created and stored
in the memory location referenced by the array pointer. For the
SB RNG, apointer to these valuesisreturned .

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX_u4(page 22) for related APIs.

mc_rand_hw_init (page 14), mc_rand_ks init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb init (page 17) for appropriate initialization API.

23

mc_rand XX 0 to 1 d2
Thisinterface is generic across all RNG implementations. The value of “XX” will
be“hw’ for Hardware, “ks” for Kirkpatrick-Stoll, “nt ” for Mersenne Twister,
and “sb” for Sobol.

Description

Return one random number vector of type double with each function call. These
double precision floating-point random numbers range from O up to, but not
including, 1.

Syntax
vector doublemc rand_hw 0 to 1 d2 (void);

vector doublemc rand_ks 0 to 1 d2 (void);
vector doublemc rand_ mt 0 to 1 d2 (void);
vector doublemc rand_sb 0 to 1 d2(void);

Parameters
None

Return Values

Random Random number vector of 2 double precision floating point
numbers pumbers.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX_0 to 1 array_d2 (page 25) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

24

mc_rand_ XX 0 to 1 array d2

Thisinterface is generic across most RNG implementations with a slight variation
for Sobol. Thevalue of “xx” will be“hw’ for Hardware, “ks” for Kirkpatrick-
Stoll, “nt ” for Mersenne Twister, and “sb” for Sobol.

Description

Return an array of random number vectors of type double with each function
call. These double precision floating-point random numbers range from O up to,
but not including, 1.

For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces,
the random numbers are returned into the array specified by the user. For Sobol,
the pointer with the random numbers is returned by the random number generator.

Syntax

void mc_rand_hw_0 to 1 array d2 (unsigned int count, vector double
*array);

void mc_rand_ks 0 to 1 array_d2 (unsigned int count, vector double
*array);

void mc_rand_mt_0 to 1 array d2 (unsigned int count, vector double
*array);

vector double*mc rand_sb 0 to 1 array d2 (unsigned int count);

Parameters
count [IN] The number of random number vectorsto return.
array The pointer to the memory location where the random
[IN/OUT] numbers should be generated. This parameter applies
only to the HW, KS, and MT RNGs.

Return Values

Random
numbers

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on

An array of random number vectors each with 2 double precision

floating point numbers. For the HW, KS, and MT RNGs, these

numbers are created and stored in the memory location referenced
by the array pointer. For the SB RNG, a pointer to these valuesis

returned.

page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also

mc_rand_XX_0 to 1 d2 (page 24) for arelated API.

25

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

26

mc_rand XX _minusl to 1 d2
Thisinterface is generic across all RNG implementations. The value of “XX” will
be“hw’ for Hardware, “ks” for Kirkpatrick-Stoll, “nt ” for Mersenne Twister,
and “sb” for Sobol.

Description

Return one random number vector of type double with each function call. These
double precision floating-point random numbers range from, but not including -1
up to, but not including, 1.

Syntax
vector doublemc_rand_hw_minusl to 1 d2(void);

vector double mc_rand_ks minusl to 1 d2(void);
vector doublemc_rand_mt_minusl to 1 d2 (void);
vector doublemc _rand_sb_minusl to 1 d2(void);

Parameters
None

Return Values

Random Random number vector of 2 double precision floating point
numbers pumbers.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX_minusl to 1 array d2 (page 28) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

27

mc_rand_ XX _minusl to_1 array d2

Thisinterface is generic across most RNG implementations with a slight variation
for Sobol. The value of “XX” will be “hw’ for Hardware, “ks” for Kirkpatrick-
Stall, “nt ” for Mersenne Twister, and “sb” for Sobol.

Description

Return an array of random number vectors of type double with each function
call. These double precision floating-point random numbers range from, but not
including -1 up to, but not including, 1.

For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces,
the random numbers are returned into the array specified by the user. For Sobol,
the pointer with the random numbers is returned by the random number generator.

Syntax

void mc_rand_hw_minusl to 1 array d2 (unsigned int count, vector
double*array);

void mc_rand_ks minusl to 1 array d2 (unsigned int count, vector double
*array);

void mc_rand_mt_minusl_to 1 array d2 (unsigned int count, vector
double*array);

vector double*mc _rand_sb_minusl to 1 array d2 (unsigned int count);

Parameters
count [IN] The number of random number vectorsto return.
array The pointer to the memory location where the random
[IN/OUT] numbers should be generated. This parameter applies
only to the HW, KS, and MT RNGs.

Return Values

Random
numbers

An array of random number vectors each with 2 double precision
floating point numbers. For the HW, KS, and MT RNGs, these
numbers are created and stored in the memory location referenced
by the array pointer. For the SB RNG, a pointer to these valuesis
returned.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on

page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also

mc_rand_XX_minusl to 1 d2 (page 27) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

29

mc_rand XX 0 to 1 f4
Thisinterface is generic across all RNG implementations. The value of “XX” will
be“hw’ for Hardware, “ks” for Kirkpatrick-Stoll, “nt ” for Mersenne Twister,
and “sb” for Sobol.

Description

Return one random number vector of type £ 1oat with each function call. These
single precision floating-point random numbers range from O up to, but not
including, 1.

Syntax
vector float mc_rand_hw_0 to 1 f4 (void);

vector float mc rand ks 0 to 1 f4 (void);
vector float mc_rand_mt_0 to 1 f4 (void);
vector float mc rand_sb 0 to 1 f4(void);

Parameters
None

Return Values

Random Random number vector of 4 single precision floating point
numbers numbers.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX 0 to 1 array f4 (page3l) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

30

mc_rand XX 0 to 1 array f4

Thisinterface is generic across most RNG implementations with a slight variation
for Sobol. The value of “XX” will be “hw’ for Hardware, “ks” for Kirkpatrick-
Stoll, “nt ” for Mersenne Twister, and “sb” for Sobol.

Description

Return an array of random number vectors of type £1oat with each function call.
These single precision floating-point random numbers range from O up to, but not
including, 1.

For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces,
the random numbers are returned into the array specified by the user. For Sobol,
the pointer with the random numbers is returned by the random number generator.

Syntax

void mc_rand_hw_0 to 1 array f4 (unsigned int count, vector float *array

);

void mc_rand_ks 0 to 1 array f4 (unsigned int count, vector float *array

);

void mc_rand_mt_0 to 1 array f4 (unsigned int count, vector float *array

);

vector float *mc _rand_sb 0 to 1 array f4 (unsigned int count);

Parameters
count [IN] The number of random number vectors to return.
array The pointer to the memory location where the random
[IN/OUT] numbers should be generated. This parameter applies
only to the HW, KS, and MT RNGs.

Return Values

Random
numbers

An array of random number vectors each with 4 single precision
floating point numbers. For the HW, KS, and MT RNGs, these
numbers are created and stored in the memory location referenced
by the array pointer. For the SB RNG, a pointer to these valuesis
returned.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on

page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also

mc_rand_XX 0 to 1 f4 (page 30) for arelated API.

31

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

32

mc_rand_ XX _minusl to 1 f4
Thisinterface is generic across all RNG implementations. The value of “XX” will

be“hw’ for Hardware, “ks” for Kirkpatrick-Stoll, “nt ” for Mersenne Twister,
and “sb” for Sobol.

Description

Return one random number vector of type £ 1oat with each function call. These
single precision floating-point random numbers range from, but not including -1
up to, but not including, 1.

Syntax
vector float mc_rand_hw_minusl to 1 f4 (void);

vector float mc_rand_ks minusl to 1 f4 (void);
vector float mc_rand_mt_minusl to 1 f4 (void);
vector float mc_rand_sb_minusl to 1 f4 (void);

Parameters
None

Return Values

Random Random number vector of 4 single precision floating point
numbers numbers.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX_minusl to 1 array f4 (page 34) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

33

mc_rand_ XX _minusl to 1 array f4
Thisinterface is generic across most RNG implementations with a slight variation
for Sobol. The value of “XX” will be “hw’ for Hardware, “ks” for Kirkpatrick-
Stoll, “nt ” for Mersenne Twister, and “sb” for Sobol.

Description

Return an array of random number vectors of type £1oat with each function call.
These single precision floating-point random numbers range from, but not
including -1 up to, but not including, 1.

For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces,
the random numbers are returned into the array specified by the user. For Sobol,
the pointer with the random numbers is returned by the random number generator.

Syntax

void mc_rand_hw_minusl to 1 array f4 (unsigned int count, vector float
*array);

void mc_rand_ks minusl to 1 array f4 (unsigned int count, vector float
*array);

void mc_rand_mt_minusl to 1 array f4 (unsigned int count, vector float
*array);

vector float *mc_rand_sb_minusl to 1 array f4 (unsigned int count);

Parameters
count [IN] The number of random number vectorsto return.
array The pointer to the memory location where the random
[IN/OUT] numbers should be generated. This parameter applies
only to the HW, KS, and MT RNGs.

Return Values

Random | Anarray of random number vectors each with 4 single precision
numbers | f|ogting point numbers. For the HW, KS, and MT RNGs, these
numbers are created and stored in the memory location referenced
by the array pointer. For the SB RNG, a pointer to these valuesis
returned.

Example

See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on
page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.

See Also
mc_rand_XX_minusl to 1 f4 (page 33) for arelated API.

mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page
16), or mc_rand_sb_init (page 17) for appropriate initialization API.

35

Chapter 6. Transformations

The Cell BE Monte Carlo library transformation routines have similar interfaces
with distinct parameters. In general, these routines take one or more vectors of
single or double precision floating-point numbers and transform them from a
fixed distribution to a normal distribution.

The Box-Muller and Polar Methods use accept-reject algorithms to transform m
inputs into n output numbers, where m> n. Moro’sinversion, however, isa
simple algorithm that transforms minputs into n output numbers, where m=n.

All of the transformation routines may be invoked directly without an
initialization routine.

36

mc_transform_bm _f4

Thisinterface applies a Box-Muller transformation to a vector of single-precision
floating point numbers from an uniform distribution to a normal distribution..

Description

Transform a vector of float-typed random numbers from a uniform distribution
into anormal distribution and return the new vector.

Syntax
vector float mc_transform_bm_f4 (vector float src);
Parameters
src [IN] An input vector of 4 single-precision floating point
numbers, evenly distributed from O up to, but not
including 1.
Return Values
New A vector of 4 floating point numbers with a normal distribution.
vector
Example

See Box-Muller Example on page 66.

See Also
mc_transform_bm_array f4 (page 38) for arelated API.

37

mc_transform_

bm_array f4

This interface applies a Box-Muller transformation to an array of single-precision
floating point vectors from an uniform distribution to a normal distribution..

Description

Transform an array of vector float types from a uniform distribution into a normal
distribution and return the new array.

Syntax

void mc_transform_bm_array f4 (unsigned int count, vector float
*s rand_array, vector float *t_rand_array);

Parameters

count [IN]

The number of vectors contained in the input arrays
S rand_array.

s _rand array
[IN]

Aninput array of vectors.

Each vector will contain four single-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t rand array
[IN/OUT]

The memory location for the output array of vectors.
Enough memory should be allocated by the invoking
program to hold 2 *count number of vectors.

Return Values

New
distribution
in

t rand array

The new data distribution will be written to the memory
location specified by thet_rand_array parameter. This
array will contain 2*count number of single-precision
floating point vectors with values having a normal
distribution.

Example

See Box-Muller Example on page 66.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

See Also

mc_transform_bm _f4 (page 37) for arelated API.

38

mc_transform_bm_d2

Thisinterface applies a Box-Muller transformation to a vector of double-precision
floating point numbers from an uniform distribution to a normal distribution.

Description

Transform a vector of double-typed random numbers from a uniform distribution
into anormal distribution and return the new vector.

Syntax
vector doublemc_transform_bm_d2 (vector double);
Parameters
src [IN] An input vector of 2 double-precision floating point
numbers, evenly distributed from O up to, but not
including 1.
Return Values
New A vector of 2 floating point numbers with a normal distribution.
vector
Example

See Box-Muller Example on page 66.

See Also
mc_transform_bm_array_d2 (page 40) for arelated API.

39

mc_transform_bm_array d2

Thisinterface applies Moro’s Inversion to transform an array of double-precision

floating point vectors from an uniform distribution to a normal distribution..

Description

Transform an array of vector double types from a uniform distribution into a
normal distribution and return the new array.

Syntax

void mc_transform_bm_array _d2 (unsigned int count, vector double
*s rand_array, vector double*t_rand_array);

Parameters

count [IN] The number of vectors contained in the input array
S rand_array.

s_rand_array Aninput array of vectors.

[IN] Each vector will contain 2 double-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t_rand array | Thememory location for the output array of vectors.
[IN/OUT] Enough memory should be allocated by the invoking
program to hold 2 *count number of vectors.

Return Values

New The new data distribution will be written to the memory
distribution | |ocation specified by thet_rand array parameter. This
énran 4 array | AT will contain 2*count number of double-precision

- — Y | floati ng point vectors with values having a normal
distribution.

Example
See Box-Muller Example on page 66.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

See Also
mc_transform_bm_d2 (page 39) for arelated API.

40

mc_transform_mi_f4

Thisinterface applies Moro’ s Inversion to transform a vector of single-precision
floating point numbers from an uniform distribution to a normal distribution..

Description

Transform a vector of float-typed random numbers from a uniform distribution
into anormal distribution and return the new vector.

Syntax
vector float mc_transform_mi_f4 (vector float src);
Parameters
src [IN] The input vector of 4 single-precision floating point
numbers, evenly distributed from O up to, but not
including 1.
Return Values
New A vector of 4 floating point numbers with a normal distribution.
vector
Example

See Moro’s Inversion Example on page 68.

See Also
mc_transform_mi_array_f4 (page 42) for arelated API.

41

mc_transform_

mi_array_f4

Thisinterface applies Moro’ s Inversion to transform an array of single-precision
floating point vectors from an uniform distribution to a normal distribution..

Description

Transform an array of vector float types from a uniform distribution into a normal
distribution and return the new array.

Syntax

void mc_transform_mi_array f4 (unsigned int count, vector float
*s rand_array, vector float *t_rand_array);

Parameters

count [IN]

The number of vectors contained in the input array
S rand_array.

s _rand array
[IN]

The input array of vectors.

Each vector will contain four single-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t rand array
[IN/OUT]

The memory location for the output array of vectors.
Enough memory should be allocated by the invoking
program to hold count number of vectors.

Return Values

New
distribution
in
t rand array

The new data distribution will be written to the memory
location specified by thet_rand_array parameter. This
array will contain count number of single-precision floating
point vectors with values having a normal distribution.

Example

See Moro’s Inversion Example on page 68.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

See Also

mc_transform_mi_f4 (page 41) for arelated API.

42

mc_transform_mi_d2

Thisinterface applies Moro’ s Inversion to transform a vector of double-precision
floating point numbers from an uniform distribution to a normal distribution..

Description

Transform a vector of double-typed random numbers from a uniform distribution
into anormal distribution and return the new vector.

Syntax
vector double mc_transform_mi_d2 (vector doublesrc);
Parameters
src [IN] The input vector of 2 double-precision floating point
numbers, evenly distributed from O up to, but not
including 1.
Return Values
New A vector of 2 floating point numbers with a normal distribution.
vector
Example

See Moro’s Inversion Example on page 68.

See Also
mc_transform_mi_array_d2 (page 44) for arelated API.

43

mc_transform_mi_array d2

Thisinterface applies Moro’s Inversion to transform an array of double-precision
floating point vectors from an uniform distribution to a normal distribution..

Description

Transform an array of vector double types from a uniform distribution into a
normal distribution and return the new array.

Syntax

void mc_transform_mi_array_d2 (unsigned int count, vector double
*s rand_array, vector double*t_rand_array);

Parameters

count [IN] The number of vectors contained in the input array

S rand_array.

s_rand_array Theinput array of vectors.

[IN] Each vector will contain 2 double-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t_rand_array | Thememory location for the output array of vectors.
[IN/OUT] Enough memory should be allocated by the invoking
program to hold count number of vectors.

Return Values

New The new data distribution will be written to the memory
distribution | |ocation specified by thet_rand array parameter. This
énran 4 array | AT will contain count number of double-precision

- — Y | floati ng point vectors with values having a normal
distribution.

Example
See Moro's Inversion Example on page 68.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

See Also
mc_transform_mi_d2 (page 43) for arelated API.

mc_transform_po_f4

Thisinterface applies a Polar-Method transform to the results from a specified
random number generator to create and return vector with a normal distribution of
single-precision floating point numbers.

Description

Transform the vector results from an RNG into a normal distribution and return
the new vector.

Syntax
vector float mc_transform_po_f4 (vector float (*p_rng) (void));
Parameters
p_rng [IN] A function pointer to a RNG that returns a vector of type

float from O up to, but not including 1.

Return Values

New A vector of 4 single-precision floating point numbers with a
vector | normal distribution.

Example
See Polar Method Example on page 70.

See Also

mc_transform_po_array f4 (page 46) and mc_transform_reject_po_array f4
(page 47) for related APIs.

45

mc_transform_po_array_f4
This interface applies a Polar-Method transform to the source numbers, using

specified random number generator as needed, to create and return an array of

vectors with anormal distribution of single-precision floating point numbers.

Description

Transform an array of vector float types from a uniform distribution into a normal
distribution and return the new array.

Syntax

void mc_transform_po_array_f4 (unsigned int count, vector float

*s rand_array, vector float *t_rand_array, vector float (*p_rng) (void));

Parameters

count [IN]

The number of vectors contained in the input arrays
s rand array.

s _rand array
[IN]

Aninput array of vectors.

Each vector will contain four single-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t rand array
[IN/OUT]

The memory location for the output array of vectors.
Enough memory should be allocated by the invoking
program to hold count number of vectors.

p_rng [IN]

A function pointer to a RNG that returns a vector of type
float from O up to, but not including 1.

Return Values

New
distribution
in

t rand array

The new data distribution will be written to the memory
location specified by thet_rand_array parameter. This
array will contain count number of single-precision floating
point vectors with values having a normal distribution.

Example

See Polar Method Example on page 70.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

See Also

mc_transform_po_f4 (page 45) and mc_transform_reject_po_array f4 (page 47)

for related APIs.

46

mc_transform_reject_po_array_f4

Thisinterface applies a Polar-Method transform to the source numbersto create
and return an array of vectors with equal or fewer elements than the input vector
and anormal distribution of single-precision floating point numbers.

Description

Transform an array of vector float types from a uniform distribution into a normal
distribution and return the new array.

Syntax

unsigned int mc_transform_reject_po_array f4 (unsigned int count, vector
float *s rand_array, vector float *t_rand_array);

Parameters

count [IN] The number of vectors contained in the input arrays

s rand array.

s_rand_array | Aninput array of vectors.

[IN] Each vector will contain four single-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t_rand_ array | Thememory location for the output array of vectors.
[IN/OUT] Enough memory should be allocated by the invoking
program to hold count number of vectors.

The actual number of elementsin the array will returned
on the call.

Return Values

New The new data distribution will be written to the memory
distribution | |ocation specified by thet_rand array parameter. This
inran d array | IV will contain count number of single-precision floating

— — Y point vectors with values having a normal distribution.
Count of The number of elements written into thet_rand_array.
elements in | Thisvaluewill beless-than or equal-to the value of the
t_rand_array | coynt input parameter.

Example
See Polar Method Example on page 70.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

47

See Also

mc_transform_po_f4 (page 45) and mc_transform_po_array f4 (page 46 for
related APIs.

48

mc_transform_po_d2

Thisinterface applies a Polar-Method transform to the results from a specified
random number generator to create and return vector with a normal distribution of
double-precision floating point numbers.

Description

Transform the vector results from an RNG into a normal distribution and return
the new vector.

Syntax

vector doublemc_transform_po_d2 (vector double (*p_rng) (void));
Parameters
p_rng [IN] A function pointer to a RNG that returns a vector of type

double from O up to, but not including 1.

Return Values

New A vector of 2 double-precision floating point numbers with a
vector | normal distribution.

Example
See Polar Method Example on page 70.

See Also

mc_transform_po_array_d2 (page 50) and mc_transform_reject_po_array d2
(page 52) for related APIs.

49

mc_transform_po_array d2

This interface applies a Polar-Method transform to the source numbers, using
specified random number generator as needed, to create and return an array of
vectors with a normal distribution of double-precision floating point numbers.

Description

Transform an array of vector double types from a uniform distribution into a
normal distribution and return the new array.

Syntax
void mc_transform_po_array_d2 (unsigned int count, vector double

);
Parameters
count [IN] The number of vectors contained in the input arrays

S rand_array.

s_rand_array Aninput array of vectors.

[IN] Each vector will contain 2 double-precision floating
point numbers ranging from O up to, but not including, 1.
The number of vectors pointed to by the array is
contained in the count parameter.

t_rand_array | Thememory location for the output array of vectors.

[IN/OUT] Enough memory should be allocated by the invoking
program to hold count number of vectors.
p_rng [IN] A function pointer to a RNG that returns a vector of type

double from 0 up to, but not including 1.

Return Values

New The new data distribution will be written to the memory
distribution | |ocation specified by thet_rand array parameter. This
énran 4 array | AT will contain count number of double-precision

- — Y | floati ng point vectors with values having a normal
distribution.

Example
See Polar Method Example on page 70.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

*s rand_array, vector double*t_rand_array, vector double (*p_rng) (void)

50

See Also

mc_transform_po_d2 (page 49) mc_transform_reject_po_array_d2 (page 52) for
related APIs.

51

mc_transform_

reject_po_array d2

Thisinterface applies a Polar-Method transform to the source numbersto create
and return an array of vectors with equal or fewer elements than the input vector
and anormal distribution of double-precision floating point numbers.

Description

Transform an array of vector float types from a uniform distribution into a normal
distribution and return the new array.

Syntax

unsigned int mc_transform_reject_po_array_d2 (unsigned int count, vector
double*s rand_array, vector double*t_rand_array);

Parameters

count [IN]

The number of vectors contained in the input arrays
s rand array.

s _rand array
[IN]

Aninput array of vectors.
Each vector will contain two double-precision floating

The number of vectors pointed to by the array is
contained in the count parameter.

point numbers ranging from O up to, but not including, 1.

t rand array
[IN/OUT]

The memory location for the output array of vectors.
Enough memory should be allocated by the invoking
program to hold count number of vectors.

The actual number of elementsin the array will returned
on the call.

Return Values

New
distribution
in

t rand array

The new data distribution will be written to the memory
location specified by thet_rand_array parameter. This
array will contain count number of double-precision
floating point vectors with values having a normal
distribution.

Count of
elements in
t rand array

The number of elements written into thet_rand_array.
Thisvalue will be less-than or equal-to the value of the
count input parameter.

Example

See Polar Method Example on page 70.

Notes

The same memory location may be used for thes rand_array and the
t rand_array parameters.

52

See Also

mc_transform_po_d2 (page 49) and mc_transform_po_array _d2 (page 50) for
related APIs.

53

Part V. Appendixes

Appendix A. Examples

The following sections show examples for each of the random number generators
and the distribution transformations.

More detailed examples can be found in the samples provided in the SDK
samples.

The Pi sample found in /opt/cellsdk/src/samples/monte-carlo/pi/ performs a
simple Monte Carlo simulation to calculate the value of pi using the vector
versions of the RNG APIs.

The Sphere sample in /opt/cellsdk/src/sampl es/monte-carl o/sphere/ performs a
more complex simulation to calculate the volume of an n-dimensional sphere,
using both vector and array RNG APIs along with various levels of optimization
in the Monte Carlo simulation.

55

Hardware-Generated Example

The following C example initializes the hardware RNG and then generates integer
and double-precision numbers for display. Vector datais extracted using C
union statements.

#include <stdio.h>
#include <stdlib.h>
#include <mc_rand.h>

int main(void) {
int 1i;

// Unions for scalar data extraction
union vecInt ({
vector unsigned int vec_ int;
unsigned int scalar int [4];
union vecIntArray {
vector unsigned int vec_ int array[10];
unsigned int scalar int array[40];

union vecDbl
vector double vec double;
} double scalar double[2];
union vecDblArray (
vector double vec_double array[10];
double scalar double array[20];

r

// Random numbers

union vecInt onelnt;

union vecIntArray tenlnts;
union vecDbl oneDouble;

union vecDblArray tenDoubles;

// Initialize HW RNG and check for support
if (0 != mc_rand hw init()) {
printf ("The HW RNG is not supported\n") ;
return -1;

// Generate single vector random numbers
onelnt.vec_int = mc_rand hw u4();
oneDouble.vec _double = mc_rand hw 0 to 1 d2();

// Generate array of vectors

mc_rand hw array u4(10,tenInts.vec_int array) ;

mc_rand hw minusl to 1 array d2(10,
tenDoubles.vec double array) ;

56

// Display single vectors

printf ("vec_double = %e %e\n",
oneDouble.scalar double[O0],
oneDouble.scalar double[1l]);

printf ("vec_int = %u %u %u %u\n",
onelnt.scalar_ int[0],
onelnt.scalar int[1],

onelnt.scalar int[2],

onelnt.scalar int[3]);

// Display array of vectors
int j=0, k=0;
for (i=0;i<10;i++)

{

j o= 1i*4;
k = 1*2;
printf ("vec_int array[%d] = %u %u %u %u\n", i,

tenInts.scalar int arrayl[jl,
tenInts.scalar int arrayl[j+1],
tenInts.scalar int arrayl[j+2],
tenInts.scalar int arrayl[j+3]);
printf ("double array[%d] = %e %e\n", i,
tenDoubles.scalar double array[k],
tenDoubles.scalar double array[k+1]);

}

return 0;

57

Kirkpatrick-Stoll Example

Like the preceding hardware RNG, the following C exampleinitializes the
Kirkpatrick-Stoll RNG and generates integer and double-precision numbers for

display. Thistime, however, the program extracts scalar data from the vectors by

using pointer addressing.

#include <stdio.h>
#include <stdlib.h>
#include <mc_rand.h>

int main(void) {
int 1i;

// Pointers for scalar data extraction
unsigned int * p int;
double * p double;

// Random numbers

vector unsigned int vec_ int;

vector unsigned int vec_int array[10];
vector double vec double;

vector double vec_double array[10];

// Initialize KS RNG
mc_rand ks init(47110);

// Generate single vector random numbers
vec_int = mc_rand ks u4 () ;
vec_double = mc_rand ks 0 to 1 d2();

// Generate array of vectors
mc_rand ks array u4(10,vec_int array);

mc_rand ks minusl to 1 array d2(10,vec double array) ;

// Display single vectors
p _double = (double *)&vec double;
p_int = (unsigned int *)&vec_int;
printf ("vec_double = %e %e\n",
p_double[0] ,p double[1]) ;
printf ("vec_int = %u %u %u %u\n",
p_int [0],p_int[1],p_int[2],p_int[3]);

// Display array of vectors

p _double = (double *)vec double array;
p_int = (unsigned int *)vec_ int array;
for (i=0;1<10;1i++)

printf ("vec_int array[%d] = %u %u %u %u\n",
i,p _int[0],p int[1],p _int[2],p _int[3]);
printf ("vec_double array[%$d] = %e %e\n",i,

58

p_double[0] ,p double[1]) ;
++p_double;
++p_int;

}

return 0;

59

Mersenne Twister Example
Like the preceding two examples, this C program utilizes a Mersenne Twister

RNG to generate integer and double-precision numbers for display. To illustrate

yet another scalar data extraction technique, the program calls SPU intrinsics to
retrieve scalar values.

#include <stdio.h>
#include <stdlib.h>
#include <mc rand.h>

int main(void) {
int 1i;
vector unsigned int vec int;
vector unsigned int vec int array[10];
vector double vec double;
vector double vec double array[10];
mc_rand mt init(1234560);

vec _int = mc_rand mt u4();
vec double = mc rand mt 0 to 1 d2();

mc_rand mt array u4 (10,vec_int array) ;

mc_rand mt minusl to 1 array d2(10,vec double array) ;

printf ("vec double = %$e %e\n",
spu_extract (vec_double,0),
spu_extract (vec_double, 1))

printf ("vec int = %u %u %u %u\n",
spu_extract (vec _int,0),
spu_extract (vec _int,1),
spu_extract (vec _int,2),
spu_extract (vec _int,3)) ;

for (i=0;i<10;i++)

printf ("vec int array[%d] = %u
spu_extract (vec_int array[i]
spu_extract (vec_int array[i]
spu_extract (vec_int array[i]
spu_extract (vec_int array[i]

printf ("vec double array[%d] =
spu_extract (vec_double array
spu_extract (vec_double array

}

return O;

60

Sobol Example

The fourth and final example illustrates the same general ideas as previous

examples-- generate integer and double-precision numbers using the Sobol RNG

for display.
The code on the SPU resembles previous examples:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <spu mfcio.h>
#include <mc rand.h>

// Control block from PPU
sobol cntrlblck t sobolCB
__attribute ((aligned(128))) ;

// Memory needed for rand sb init. This size is

// related to the parameters passed to rand sb init
// and must be calculated in conjunction with those
// parameter values.

// The formula is:

// size = (parm 2 + 76) * parm 3 + 8

// The exact size in this example would be:

// 1004 = ((256+76)*3)+8

vector unsigned char rand sb mem[1004]
__attribute ((aligned(128)));

int main(unsigned long long speid,
unsigned long long argp,
unsigned long long envp) {

unsigned int tag = 1;
unsigned int tag mask = l<<tag;

int 1i,rc;
vector float vec flt;
vector float vec flt array[10];

// DMA control block into local store

mfc get (&sobolCB, (unsigned int)argp, 128, tag,
0, 0);

mfc write tag mask(tag mask) ;

mfc read tag status all();

// Initialize sobol generator
rc = rand sb init (&sobolCB, 256,
sobolCB.u32TableDimension, &rand sb mem[0],

61

sizeof (rand sb mem)) ;
if (rc != 0)
{
printf ("Error: Sobol Init failed with RC=%d/n",
i);
return(-1) ;

// Generate scalar values
vec _flt = rand sb 0 to 1 f4();

// Generate array values
memcpy (vec_flt array,
rand sb minusl to 1 array £f4(10), 10*1l6);

// Display results
printf ("vec float = %e %
spu_extract (vec_flt,0),
spu_extract (vec flt,1),
spu_extract (vec_flt,2),
spu_extract (vec flt,3));
?or (1=0;1<10;1++)
printf ("vec float arrayl[%d] =
spu_extract (vec_flt arrayl[i
spu_extract (vec_flt arrayl[i
spu_extract (vec_flt arrayl[i
spu_extract (vec_flt arrayl[i

—_

}

return 0;

}

Two differences occur between the Sobol RNG and the previous examples. First,
the array of vectors RNG interface (ntc_rand_sb_array_f 4) returnsa
pointer to the datainstead of putting the datain a specified location--producing
and additional mentpy not in previous examples.

Second, this random number generator requires more data for initialization than
previous examples. In thisexample, the datais DMA’d from the PPU. The
details of this data are highlighted in the PPU code shown below:

#include <libspe2.h>
#include <pthread.hs>
#include <stdlib.hs>
#include <stdio.hs>
#include <sys/wait.h>
#include <string.hs>
#include <mc_rand sb.h>

62

sobol direction vector table for 30 bits and 3
dimensions

~o~
~o~

// Initialized for 5 bits x 3 dimensions
// dimensions a, b, c

// bits 0, 1, 2, 3

// a0 b0 coO

// al bl c1l

// a2 b2 c2

// a3 b3 c3

// a4 b4 c4

// Maximum allowed space dimension
#undef SOBOL_ MAX DIMENSION
#define SOBOL_MAX DIMENSION 3

// Bit count; assumes sizeof (int) >= 32-bit
#undef SOBOL_BIT COUNT
#define SOBOL_BIT COUNT 30

// This table is a 2D array
// bits x dimensions

vector unsigned int u32 vecDirections

[(SOBOL_BIT COUNT+3)>>2] [SOBOL MAX DIMENSION] = {

{ // bits 0-3
536870912, 268435456, 134217728, 67108864}, //
536870912, 805306368, 671088640, 1006632960},// b
536870912, 268435456, 939524096, 738197504}},//

{ // bits 4-7
// NOTE: Zeroed values represent unused bits

33554432, 0, 0, 0 }, // a
570425344, 0, 0, 0 }, // b
436207616 0, 0, 0 }}, //
O/ O/ 7 O }/

0, 0, O, o %

o, 0, 0, O // 2

{ O/ O/ 7 O 7

0, 0, O, o %

o, 0, 0, O // 3

{ O/ O/ 7 O 7

0, 0, O, o %

o, 0, 0, O // 4

{ O/ O/ 7 O 7

0, 0, O, o %

o, 0, 0, O // 5

{ O/ O/ 7 O 7

0, 0, O, o %

o, 0, 0, O // 6

{ O/ O/ 7 O 7

63

0, 0, 0, 0 y,
0, 0, 0, 0 }} /7

}i

inline static void rand sobol set CB(sobol cntrlblck t
*gobolCB, unsigned int u32Seed)

sobolCB->pu32 vecDirection =
&vecDirections [0] [0];
sobolCB->u32sizeofTable = sizeof (u32 vecDirections) ;
sobolCB->u32TableDimension = SOBOL_ MAX DIMENSION;
sobolCB->u32TableBitCount =
(SOBOL_BIT COUNT+3) &0xFFFFFFFC;
sobolCB->u32MaxBitCount = SOBOL BIT COUNT;
sobolCB->u32Seed = u32Seed;

return;

}

sobol cntrlblck t sobolCB
__attribute ((aligned(128)));

// This is the pointer to the SPE code, to be used at
// thread creation time
extern spe program handle t spu rand;

void *ppu pthread function(void *arg) {
spe context ptr t context =
* (spe_context ptr t *)arg;
unsigned int entry = SPE DEFAULT ENTRY;
spe stop_info t stop info;

int rc = spe context run(context, &entry, 0,
&sobolCB, NULL, &stop_ info) ;
if (rc < 0) perror("spe context run");

pthread exit (NULL) ;

}

int main(void)

{
// Initialize Sobol control block
rand sobol set CB(&sobolCB, 0);

// Create SPE thread
pthread t pthread;
spe context ptr t spe context =
spe context create(0, NULL) ;
spe_program load(spe context, &spu rand);

// Start SPE thread
pthread create (&pthread, NULL, &ppu_pthread function,
&spe context) ;

// Wait for thread completion
pthread join(pthread,NULL) ;

spe context destroy(spe context);
printf ("PPE: Done\n") ;

return 0;

}

The above example shows how to instantiate a 5-bit by 3-dimension initialization
table. Zero valuesin the vecDirections array represent unused initialization
values for the example.

In practice, applications are likely to have their own initialization table for the
Sobol algorithm. Thistable, like vecDirections, will need to be atwo-
dimensional array with the first index being up to 8 in size to represent the
maximum bits and the second index representing the maximum number of RNG
dimensions. Applications may elect to create their initialization data or use a
basic set found in /opt/cell/sdk/src/samples/monte-carlo/sobol _init_30_40.h.

Although this example represents a simple instance of the Sobol RNG, even more
complex applications will follow a similar structure of instantiating the Sobol
initialization table on the PPU, creating and initializing a control block on the
PPU, transferring this control to the SPU, and then initializing and invoking the
SPU to generate numbers.

Additional examples of the Sobol and other random number generators can be
found in /opt/cell/sdk/src/samples/monte-carlo.

65

Box-Muller Example

The following example generates data using the Mersenne Twister RNG,
transforms it using the Box-Muller algorith, and displays the data. Array-based
APIs are used for both number generation and transformation.

#include <stdio.h>
#include <stdlib.h>
#include <mc_rand.h>

#define NUM RN VECTORS 8

// Source RNs
vector float rn source f4[NUM RN VECTORS];
vector double rn source d2|[NUM RN _VECTORS] ;

// Transformed RNs

// NOTE: For Box-Mueller the transform data is twice
// as large as the source datal!!!

vector float rn transform f4 [NUM RN VECTORS*2];
vector double rn transform - d2 [NUM RN _VECTORS*2];

int main(void) {
int 1i;

float *p float source, *p float transform;
double *p double _source, *p_double_transform;

// Initialize RNG
mc_rand mt _init(47110);

// Generate source data

mc_rand mt 0 to 1 array f4(NUM RN VECTORS,
rn_source f4);

mc_rand mt 0 to 1 array d2(NUM RN VECTORS,
rn_source d2);

// Transform data

mc_transform bm array f4(NUM RN VECTORS,
rn source f4, rn_transform fa) ;

mc_transform bm _array d2(NUM RN VECTORS,
rn_source d2, rn transform d2);

// Float data
for (i=0; i< NUM RN VECTORS; i++)

// Set pointer to current location
p_float source =
(float *) &rn source f4[i];
p _float transform =
(float *) &rn transform f4[i*2];

66

// Output data

printf ("Float source: %f, %f, %f, %f\n",
p_float source[0], p_float source[l],
p_float source[2], p_float source[3]);

printf ("Float transform: %f, %f, %f, %$f\n",
p_float transform[0], p float transform([1]

p _float transform[2], p float transform[3]);
printf ("Float transform: %f, %f, %f, %$f\n",
p float transform[4], p float transform[5]

p float transform([6], p float transform[7]);

// Double data
for (i=0; i< NUM RN VECTORS; i++)

}

// Set pointer to current location
p_double source =
(double *) &rn source d2[i];
p_double transform =
(double *) &rn transform d2[i*2];

// Output data
printf ("Double source: %f, %$f\n",

p_double source[0], p double sourcel[l]);
printf ("Double transform: %£f, %f\n",

p _double transform[0], p double transform[1l]);
printf ("Double transform: %£f, %f\n",

p _double transform[2], p double transform[3]);

return 0;

}

Programs using this transformation APIs need to ensure that the memory

alocated for transformed datais twice as large as the source data. The above
example accomplishes this by allocated NUM_ RN VECTORS for the source arrays
and NUM_RN VECTORS*2 for the transformed arrays.

67

Moro’s Inversion Example

Moro’s Inversion algorithm transforms data most simply—one value in, one value
out. The following code generates data using the Kirkpatrick-Stoll RNG,
transformsit, and displays all data.

#include <stdio.h>
#include <stdlib.h>
#include <mc_rand.h>

#define NUM RN VECTORS 8

// Source RNs
vector float rn source f4[NUM RN VECTORS];
vector double rn source d2[NUM RN VECTORS] ;

// Transformed RNs
vector float rn transform f4[NUM RN VECTORS];
vector double rn transform d2[NUM RN VECTORS] ;

int main(void) {
int 1i;

float *p float source, *p float transform;
double *p double source, *p double transform;

// Initialize RNG
mc_rand ks init(47110);

// Generate source data
mc_rand ks 0 to 1 array f4(NUM RN VECTORS,
rn_source f4);

mc_rand ks 0 to 1 array d2(NUM_RN VECTORS,
rn_source d2);

// Transform data

mc_transform mi array f4(NUM RN VECTORS,
rn_source f4, rn transform f4);

mc_transform mi array d2(NUM_RN VECTORS,
rn_source d2, rn transform d2);

// Float data
for (i=0; i< NUM RN VECTORS; i++)

// Set pointer to current location
p_float source = (float *) &rn source f4[i];
p_float transform = (float *) &rn transform f4[i];

// Output data

printf ("Float source: %f, %f, %f, %f\n",
p float source[0], p float sourcell],

68

p_float source[2], p_float source[3]);
printf ("Float transform: %f, %f, %f, %$f\n",

p float transform[0], p float transform[1],

p_float transform[2], p float transform[3]);

// Double data
for (i=0; i< NUM_ RN VECTORS; i++)

// Set pointer to current location
p_double source =
(double *) &rn source d2[i];
p_double transform =
(double *) &rn transform d2[i];

// Output data
printf ("Double source: %f, %$f\n",
p _double source[0], p double sourcel[l]);
printf ("Double transform: %£f, %f\n",
} p _double transform[0], p double transform[1l]);

return 0;

69

Polar Method Example

The Polar Method transformation API'S represents the most complex interfaces
due to the accept-reject nature of the algorithm. Most interfaces require a
function pointer to arandom number generator to allow for generation of more
values as needed.

The following example shows all three types of Polar Method interfaces. The
first set of f1oat datais generated using the array interface and transformed
using the array interfacemc_transform reject po array £4 which
rejects values without replacement.

Thedoubl e datais generated using the array interface
mc_transform po array d2 and then transformed with rejects being
replaced using new values.

The second set of f | oat datais generated and transformed a vector at atime,
using asingle API invocation of mc_transform po f4.

#include <stdio.h>
#include <stdlib.h>
#include <mc rand.h>

#define NUM RN VECTORS 8

// Source RNs
vector float rn source f4[NUM RN VECTORS];
vector double rn source d2|[NUM RN __VECTORS] ;

// Transformed RNs

vector float rn transform 1 f4[NUM RN VECTORS] ;
vector float rn " transform 2 f4] NUM RN VECTORS];
vector double rn transform d2[NUM RN _VECTORS] ;

int main(void) {
int i, num transformed;

float *p float source, *p float transform;
double *p double _source, *p_ double _transform;

// Initialize RNG
mc_rand ks init(4711U0) ;

// Generate source data
mc_rand ks 0 to 1 array f4(NUM RN VECTORS,
rn_source f4);

mc_rand ks 0 to 1 array d2(NUM RN VECTORS,
rn_source d2) ;

// Transform float data first time--passing an array,

70

// rejecting data (without an RNG), returning count

num_ transformed =

mc_transform reject po array f4(NUM RN VECTORS,

rn source f4, rn transform 1 f4);

// Tranform double data using an RNG

mc_transform po array d2(NUM_RN VECTORS,

rn_source d2, rn transform d2,
mc_rand ks minusl to 1 d2);

// Generate and transform floats a second time--

// one vector at at time, using an RNG
for (i=0; i < NUM RN VECTORS; i++)

{

rn_transform 2 f4[i] =

mc_transform po f4(mc_rand ks minusl to 1 f4

}

// Float data - No RNG
for (i=0; i< NUM_RN VECTORS; i++)

// Set pointer to current location
p _float source =
(float *) &rn source f4[i];
p _float transform =
(float *) &rn transform 1 f4[i];

// Output data

printf ("Float source: %$f, %f, %f, %f\n",

p float sourcel[0], p_ float source[l]

P float _source (2], p_ float source[3])

if (i < num transformed)
{
printf (
"Float transform (Reject): %$f, %f,

}
}

// Double data
for (i=0; i< NUM RN VECTORS; i++)

// Set pointer to current location
p_double source =
(double *) &rn source d2[i];
p_double transform =
(double *) &rn transform d2[i];

// Output data
printf ("Double source: %f, %$f\n",

st,

p _double source[0], p_ double source[1]) ;

printf ("Double transform: %$f, %$f\n",

)

$f\n",
p float transform[0], p float transform[l]
p float transform[2], p float transform[3])

p _double transform[0], p_double_transform[l]);

71

}

// Float data - RNG
for (i=0; i< NUM_ RN VECTORS; i++)

// Set pointer to current location
p_float transform =
(float *) &rn transform 2 f4[i];

// Output data

printf ("Float transform (RNG): %f, %f, %f, %f\n"
p float transform[0], p float transform[1],
p_float transform[2], p float transform[3]);

}

return 0;

72

Appendix B. Getting Help or Technical Assistance

If you need help, service, or technical assistance or just want more information
about IBM products, you will find awide variety of sources available from IBM
to assist you. This appendix contains information about where to go for additional
information about IBM and IBM products and whom to call for service, if itis
necessary.

Using the Documentation

Information about your IBM hardware or software is available in the
documentation that comes with the product. That documentation can include
printed documents, online documents, readme files, and help files. See the
troubleshooting information in your documentation for instructions for using
diagnostic programs. The troubleshooting information or the diagnostic programs
might tell you that you need additional or updated device drivers or other
software. IBM maintains pages on the World Wide Web where you can get the
latest technical information and download device drivers and updates. To access
these pages, go to http://www.ibm.com/bladecenter/, click Support, and follow the
instructions. Also, some documents are available through the IBM Publications
Center at http://www.ibm.com/shop/publications/order/.

Getting Help and Information from the World Wide Web

Y ou can locate documentation and other resources on the World Wide Web.
Refer to the following web sites:

e |BM BladeCenter systems, optional devices, services, and support
information at http://www.ibm.com/bladecenter/. For service information,
select Support.

e developerWorks® Cell/B.E. Resource Center at
http://www.ibm.com/devel operworks/power/cell/. To access the Cell/B.E.
forum on developerWorks, select Community.

e The Barcelona Supercomputing Center (BSC) Web site at
http://www.bsc.es/proj ects/deepcomputi ng/linuxoncell.

e Thereisalso support for the Full-System Simulator and XL C/C++
Compiler through their individual alphaworks® forums. If in doubt, start
with the Cell/B.E. architecture forum.

e The GNU Project debugger, GDB, is supported through many different
forums on the Web, but primarily at the GDB Web site
http://www.gnu.org/software/gdb/gdb.html.

73

http://www.ibm.com/bladecenter/
http://www.ibm.com/shop/publications/order/
http://www.ibm.com/bladecenter/
http://www.ibm.com/developerworks/power/cell/
http://www.bsc.es/projects/deepcomputing/linuxoncell
http://www.gnu.org/software/gdb/gdb.html

Contacting IBM Support

To obtain telephone assistance, for afee or on a support contract, contact IBM
Support. In the U.S. and Canada, call 1-800-IBM-SERV (1-800-426-7378), or see
http://www.ibm.com/planetwide/ for support telephone numbers.

74

http://www.ibm.com/planetwide/

Appendix C. Accessibility

Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products successfully.

The following list includes the major accessibility features:

¢ Keyboard-only operation

e Interfaces that are commonly used by screen readers

e Keysthat are tactilely discernible and do not activate just by touching them
e Industry-standard devices for ports and connectors

¢ The attachment of alternative input and output devices

IBM® and accessibility

Seethe IBM Accessibility Center at http://www.ibm.com/able/ for more
information about the commitment that IBM has to accessibility.

75

http://www.ibm.com/able/

76

Appendix D. Notices

Code License and Disclaimer Information

IBM grants you a nonexclusive copyright license to use all programming code
examples from which you can generate similar function tailored to your own
specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE
EXCLUDED, IBM, ITSPROGRAM DEVELOPERS AND SUPPLIERS MAKE
NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR
TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITSPROGRAM DEVELOPERS OR
SUPPLIERSLIABLE FOR ANY OF THE FOLLOWING, EVEN IF
INFORMED OF THEIR POSSIBILITY':

1. LOSSOF, OR DAMAGE TO, DATA;

2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR
FOR ANY ECONOMIC CONSEQUENTIAL DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR
ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF DIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR
EXCLUSIONS MAY NOT APPLY TO YOU.

Trademarks

developerWorks, DB2, IBM, the IBM logo, ibm.com, and PowerPC are registered
trademarks of International Business Machines Corporation in the United States,
other countries, or both.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc. in the United States, other countries, or both and is used under
license therefrom.

Other company, product or service names may be trademarks or service marks of
others.

77

	IBM Cell BE Monte Carlo Library API Reference Manual
	 Version 1.0 (beta)
	© Copyright IBM Corporation 2007. All rights reserved.
	
	
	 Table of Contents
	PREFACE iv
	About this publication iv
	Intended audience iv
	Conventions and terminology v
	Typographical conventions v
	Prerequisite and related information v
	Chapter 1. Cell BE Monte Carlo Library Introduction 2
	Concepts 3
	DMA 3
	PPE 3
	PPU 3
	Random Number 3
	Physical-Random Number 3
	Pseudo-Random Number 3
	Quasi-Random Number 3
	RNG 3
	SPE 3
	SPU 4
	Random Number Generators 4
	Hardware-generated 4
	Kirkpatrick-Stoll (KS) 4
	Mersenne Twister (MT) 4
	Sobol 4
	Transformations 4
	Box-Muller (BM) 4
	Moro’s Inversion (MI) 5
	Polar Method (PO) 5
	Selecting a Random Number Generator 5
	Limitations 6
	Chapter 2. Installing and Configuring Cell BE Monte Carlo Library 8
	Chapter 3. Programming 10
	Chapter 4. Programming for Cell BE 11
	Chapter 5. Random Number Generators 13
	Random Number Initialization 13
	mc_rand_hw_init 14
	mc_rand_ks_init 15
	mc_rand_mt_init 16
	mc_rand_sb_init 17
	mc_rand_sb_seed 20
	Random Number Generation 21
	mc_rand_XX_u4 22
	mc_rand_XX_array_u4 23
	mc_rand_XX_0_to_1_d2 24
	mc_rand_XX_0_to_1_array_d2 25
	mc_rand_XX_minus1_to_1_d2 27
	mc_rand_XX_minus1_to_1_array_d2 28
	mc_rand_XX_0_to_1_f4 30
	mc_rand_XX_0_to_1_array_f4 31
	mc_rand_XX_minus1_to_1_f4 33
	mc_rand_XX_minus1_to_1_array_f4 34
	Chapter 6. Transformations 36
	mc_transform_bm_f4 37
	mc_transform_bm_array_f4 38
	mc_transform_bm_d2 39
	mc_transform_bm_array_d2 40
	mc_transform_mi_f4 41
	mc_transform_mi_array_f4 42
	mc_transform_mi_d2 43
	mc_transform_mi_array_d2 44
	mc_transform_po_f4 45
	mc_transform_po_array_f4 46
	mc_transform_reject_po_array_f4 47
	mc_transform_po_d2 49
	mc_transform_po_array_d2 50
	mc_transform_reject_po_array_d2 52
	Appendix A. Examples 55
	Hardware-Generated Example 56
	Kirkpatrick-Stoll Example 58
	Mersenne Twister Example 60
	Sobol Example 61
	Box-Muller Example 66
	Moro’s Inversion Example 68
	Polar Method Example 70
	Appendix B. Getting Help or Technical Assistance 73
	Using the Documentation 73
	Getting Help and Information from the World Wide Web 73
	Contacting IBM Support 74
	Appendix C. Accessibility 75
	Appendix D. Notices 77
	Code License and Disclaimer Information 77
	Trademarks 77
	PREFACE
	About this publication

	This document is the application programming interface (API) specification for the Cell Broadband™ (BE) Monte Carlo beta library provided in the IBM™ Cell Broadband Engine Software Development Kit (SDK). This library contains APIs to produce random numbers and perform distribution transformations on groups of numbers.
	The library contains 4 random number generation (RNG) algorithms (hardware-generated, Kirkpatrick-Stoll, Mersenne Twister, and Sobol), 3 distribution transformations (Box-Muller, Moro’s Inversion, and Polar Method), and two Monte Carlo simulation samples (calculations of pi and the volume of an n-dimensional sphere).
	This document provides a detailed description of the APIs in their library and their use. Using this information, programmers on the Cell BE platform should be able to utilize the library to perform Monte Carlo simulations.
	Specifically, the book covers the following sections:
	 Chapter 1, “Cell BE Monte Carlo Library Introduction,” on page 2 describes the various random number and transformation algorithms.
	 Chapter 2, “Installing and Configuring Cell BE Monte Carlo Library,” on page 8 addresses package installation.
	 Chapter 3, “Programming,” on page 10 covers basic programming setup for using the library.
	 Chapter 4, “Programming for Cell BE,” on page 11 documents platform unique restrictions for the library.
	 Chapter 5, “Random Number Generators,” on page 13 details the individual RNG APIs.
	 Chapter 6, “Transformations,” on page 36 describes the distribution transformation APIs.
	Intended audience

	This book provides details needed by software engineers and programmers. Specifically, it details random number generators and distribution transforms available with the Cell BE SDK on hardware platforms running the Cell Broadband Engine.
	Conventions and terminology
	Typographical conventions

	The following table explains the typographical conventions used in this document.
	Table 1. Typographical Conventions
	Typeface
	Indicates
	Example
	Bold
	Lowercase commands, executable names, compiler options and directives.
	If you specify -O3, the compiler assumes -qhot=level=0. To prevent all HOT optimizations with -O3, you must specify -qnohot.
	Italics
	Parameters or variables whose actual names or values are to be supplied by the user. Italics are also used to introduce new terms.
	Make sure that you update the size parameter if you return more than the size requested.
	monospace
	Programming keywords and library functions, compiler built-in functions, examples of program code, command strings, or user-defined names.
	If one or two cases of a switch statement are typically executed much more frequently than other cases, break out those cases by handling them separately before the switch statement.
	Prerequisite and related information

	The IBM Cell BE SDK 3.0 includes the Cell BE Monte Carlo library. The SDK should be installed prior to installing the library.
	SDK installation documentation can be found in the Software Development Kit 3.0 Installation Guide available at the Cell Broadband Engine Resource Center developerWorks™ website, http://www-128.ibm.com/developerworks/power/cell.
	Additional documentation pertaining to the SDK development environment can be found at this website—the Cell Broadband Engine Programming Tutorial and the Cell Broadband Engine Programming Handbook.
	
	Part I. Overview
	Chapter 1. Cell BE Monte Carlo Library Introduction
	Random numbers generation and distribution transformation occur widely in many scientific and engineering applications for simulating random processes and statistical methods. Common applications for these numbers include lotteries and encryption key generation.
	The Cell BE Monte Carlo Library provides two types of interfaces commonly used in Monte Carlo simulations – random number generators (RNGs) and distribution transformations.
	The RNG algorithms implemented include:
	1. Hardware-based
	2. Kirkpatrick-Stoll
	3. Mersenne Twister
	4. Sobol
	Additionally, the following transforms are also provided:
	1. Box-Muller
	2. Moro’s Inversion
	3. Polar Method
	This SPU-only library generally provides interfaces in C and C++ to perform the operations—random number generation or distribution transformation—on either a single vector or an array of vectors.
	Random numbers can be created of the following types:
	 32 bit integer (unsigned int)
	 32 bit single-precision floating point (float) with a range of (0 to 1]—from zero up to, but not including one.
	 32 bit single-precision floating point (float) with a range of [-1to 1] —from, but not including minus one up to, but not including one.
	 64 bit double-precision floating point (double) with a range of (0 to 1] —from zero up to, but not including one.
	 64 bit double-precision floating point (double) with a range of [-1 to 1] —from but not including minus 1 up to, but not including one.
	Distribution transformations are provided for types both single- and double-precision floating point values (float and double).
	Concepts

	The following sections explain the main concepts and terms used in the Cell BE Monte Carlo library.
	DMA

	Direct Memory Access. A technique for using a special-purpose controller to generate the source and destination addresses for a memory or I/O transfer.
	PPE

	PowerPC™ Processor Element. The general-purpose processor in the Cell BE processor.
	PPU

	PowerPC Processor Unit. The part of the PPE that executes instructions from its main memory.
	Random Number

	A number obtained by chance.
	Physical-Random Number

	A random number obtained by sampling some physical object, such as a die.
	Pseudo-Random Number

	A number obtained by some defined arithmetic process, but is effectively a random number for the purpose for which it is required.
	Quasi-Random Number

	A random number also defined by an arithmetic process which compromises statistical randomness to obtain uniform distribution across the domain of potential values during its arithmetic sequence.
	RNG

	Random Number Generator. A program or library which returns random numbers.
	SPE

	Synergistic Processor Element. Extends the PowerPC 64 architecture by acting as cooperative offload processors (synergistic processors), with the direct memory access (DMA) and synchronization mechanisms to communicate with them (memory flow control), and with enhancements for real-time management. There are 8 SPEs on each Cell BE processor.
	SPU

	Synergistic Processor Unit. The part of an SPE that executes instructions from its local store (LS).
	Random Number Generators
	Hardware-generated

	The hardware random number generator (HW RNG) samples hardware on Cell BE platform to generate its value. This physical RNG represents the closest interface to being truly random. No seed value is required and the resulting sequence does not have a predictable pattern.
	Kirkpatrick-Stoll (KS)

	The KS-RNG represents a quick and efficient implementation of a pseudo-random number generator. This RNG maintains a small set of working data and strives for linear independence among the generated numbers.
	Mersenne Twister (MT)

	The MT method for generating pseudo-random numbers also represents another fast and flexible approach to random-number generation.
	The MT has a proven period of 2^(19937-1) with negligible serial correlation. The algorithm generates numbers using a twisted feedback shift register.
	Sobol

	The Sobol RNG represents the only quasi-random number generator in the library. Unlike pseudo-random number generators which strive for statistical randomness in its number, this RNG works for even distribution of numbers across the domain.
	This implementation of the Sobol algorithm uses an application-provided initialization table and a large working data area to generate numbers extremely quickly.
	Transformations
	Box-Muller (BM)

	The Box-Muller transformation converts a uniform distribution (0, 1] to a normal distribution with an expectant value of 0.
	For the array interfaces, this transform returns two vectors for every input vector. For the vector interface, only a single vector is returned.
	The general formula for the transformation of two input random numbers n1 and n2 are as follows:
	
	
	Moro’s Inversion (MI)

	Like Box-Muller, the MI transform converts a uniform distribution (0,1] to a normal distribution float and double data types. This algorithm is the simplest of the distribution transformations, returning one transformed value for each input value.
	Polar Method (PO)

	The Polar Method is a derivative method of the Box-Muller transformation. This method also converts a uniform distribution (0,1] to a normal distribution of float and double data types. However, this method uses an accept-reject algorithm that generally produces fewer points, unless additional RNGs are generated.
	The generalized formulas for the Polar Method uses two input random numbers n1 and n2 as follows:
	
	If q > 1 or q =0, the numbers are rejected and another pair is used. If not, the following formulas generate the pair of transformed values t1 and t2.
	
	
	
	In general, this method transforms data in a quicker fashion due to the substitution of one division for one multiplication and one trigonometric function.
	Selecting a Random Number Generator

	Applications requiring random numbers generally select the specific algorithm based upon their individual requirements and their knowledge of various algorithms.
	When users are unfamiliar with the specific RNG algorithms, the following summary of the algorithms should be considered:
	Table 2 Random Number Generator Comparisons
	 Algorithm
	Location
	Size
	Speed
	Randomness
	libmisc rand()
	PPU & SPU
	Smallest
	Moderate
	Pseudo
	Hardware
	SPU
	Small
	Slowest
	Physical
	Kirkpatrick-Stoll
	SPU
	Moderate
	Fast
	Pseudo
	Mersenne Twister
	SPU
	Moderate
	Moderate
	Pseudo
	Sobol
	SPU
	Largest
	Fastest
	Quasi
	Limitations

	The hardware-generated random number generator has the following limitations on its values:
	Table 3 Hardware-Generated Random Number Limitations
	Function(s)
	Number of Uniformly Distributed Values
	Special Notes
	mc_rand_hw_u4,
	mc_rand_hw_array_u4
	232
	mc_rand_hw_0_to_1_f4
	mc_rand_hw_0_to_1_array_f4
	222
	The least significant bit (lsb) of the mantissa is always 0
	mc_rand_hw_minus1_to_1_f4
	mc_rand_hw_minus1_to_1_array_f4
	221
	The 2 lsb's of the mantissa are always 0
	mc_rand_hw_0_to_1_d2
	mc_rand_hw_0_to_1_array_d2
	251
	The lsb of the mantissa is always 0
	mc_rand_hw_minus1_to_1_d2
	mc_rand_hw_minus1_to_1_array_d2
	250
	The 2 lsb's of the mantissa are always 0
	Part II. Configuring Cell BE Monte Carlo Library
	Chapter 2. Installing and Configuring Cell BE Monte Carlo Library
	Installation and configuration of the Cell BE Monte Carlo library occurs after the SDK has been installed using the cellsdk script in the Cell BE SDK.
	For details on installing the SDK, see the “Installing the SDK” section of the Software Development Kit 3.0 Installation Guide available at the Cell Broadband Engine Resource Center developerWorks website, http://www-128.ibm.com/developerworks/power/cell.
	Once the SDK installation is complete, users wanting to develop with the library can install it directly with the following command:
	yum install rpm_file_name
	Customers developing their applications natively on Cell BE platforms should use an rpm_file_name of libmc-rand-devel.3.0-1.ppc.rpm. Customers developing on non-Cell BE platforms, should use rpm_file_name of libmc-rand-cross-devel.3.0-1.ppc.rpm.
	Graphical installation can be accomplished by using the cellsdk –gui install command and then selecting the appropriate RPM.
	Part III. Programming with Cell BE Monte Carlo Library
	Chapter 3. Programming
	To use the random number generators and transforms in the libmc_rand library, SPU programs should include the following statement:
	#include <mc_rand.h>
	The program’s Makefile must also include the following statements to ensure linkage of the appropriate libraries:
	INCLUDE = $(SDKPRINC)
	LIBRARY += $(SDKPRLIB)
	IMPORTS += -lmc_rand
	Additionally, portions of the library have dependencies on the simdmath library. If the using program is not already including this library at link time, the following statement should be added to the Makefile:
	IMPORTS += -lsimdmath
	Programs running on the PPU and wishing to utilize the Sobol RNG algorithm on an SPU will also need the following include statement:
	#include <mc_rand_sb.h>
	No additional changes are needed to the Makefile for the PPU modules.
	Chapter 4. Programming for Cell BE
	The code provided in this design supports the same environments as the Cell BE SDK.
	Although not explicitly prevented, all code except the Hardware RNG would function correctly on other Cell hardware such as the Sony™ PS3™. Detection of this environment is facilitated by an initialization routine for the Hardware RNG that returns a value indicating success or failure. The following table summarizes this limitation:
	Table 4 Support Environments of the Hardware Random Number Generator
	Secure CBE
	Execution State
	HW RNG
	Comment
	No
	Isolated
	-
	Non-supported state
	No
	Non-isolated
	Available
	IBM Blade
	Yes
	Isolated
	Available
	Non-accessible state in current HW offerings
	Yes
	Non-isolated
	Not Available
	PS3
	For more details, see the “Return Values” subsection of the mc_rand_hw_init API on page 14.
	Part IV. Cell BE Monte Carlo Library API Reference
	The following sections define the APIs found in the libmc_rand library.
	Chapter 5. Random Number Generators
	Two sets of APIs are generally provided with random number generators—initialization routines and random number generation routines. The following sections detail the interfaces provided in the Cell BE Monte Carlo Library.
	 Random Number Initialization

	Each random number generator implementation has an initialization routine with its unique set of parameters. Before invoking any random number generation routines, the implementation-specific initialization routine should be called. Failure to do this will result in a poor variation of random numbers.
	The following sections detail the random number initialization APIs.
	 mc_rand_hw_init

	This interface initializes the hardware-generated random number generator.
	Description

	Verify and initialize the operating environment of the HW RNG. Indicate supported environment.
	Syntax

	int mc_rand_hw_init (void);
	Parameters

	None
	Return Values

	0
	The environment supports the hardware-generated RNG.
	< 0
	The HW RNG is not supported in this environment.
	Example

	See Hardware-Generated Example on page 56.
	Notes

	The return value from the initialization routine must be checked. Execution of the RNG in an unsupported environment will result in random numbers of zero.
	See Also

	mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23), mc_rand_XX_0_to_1_d2 (page 24), mc_rand_XX_0_to_1_array_d2 (page 25), mc_rand_XX_minus1_to_1_d2 (page 27), mc_rand_XX_minus1_to_1_array_d2 (page 28), mc_rand_XX_0_to_1_f4 page 30), mc_rand_XX_0_to_1_array_f4 (page 31), mc_rand_XX_minus1_to_1_f4 (page 33), and mc_rand_XX_minus1_to_1_array_f4 (page 34) for related APIs.
	Table 4 Support Environments of the Hardware Random Number Generator on page 11 for support environment details.
	 mc_rand_ks_init

	This interface initializes the Kirkpatrick-Stoll random number generator.
	Description

	Initialize the operating environment of the KS RNG.
	Syntax

	void mc_rand_ks_init (unsigned int seed);
	Parameters

	seed[IN]
	An initialization value for the RNG.
	Return Values

	None
	Example

	See Kirkpatrick-Stoll Example on page 58.
	Notes

	The initialization routine must be called prior to generating any random numbers. Failure to initialize the RNG will result in random number values of zeros.
	See Also

	mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23), mc_rand_XX_0_to_1_d2 (page 24), mc_rand_XX_0_to_1_array_d2 (page 25), mc_rand_XX_minus1_to_1_d2 (page 27), mc_rand_XX_minus1_to_1_array_d2 (page 28), mc_rand_XX_0_to_1_f4 page 30), mc_rand_XX_0_to_1_array_f4 (page 31), mc_rand_XX_minus1_to_1_f4 (page 33), and mc_rand_XX_minus1_to_1_array_f4 (page 34) for related APIs.
	 mc_rand_mt_init

	This interface initializes the Mersenne Twister random number generator.
	Description

	Initialize the operating environment of the MT RNG using the seed provided.
	Syntax

	void mc_rand_mt_init (unsigned int seed);
	Parameters

	seed[IN]
	An initialization value for the RNG.
	Return Values

	None
	Example

	See Mersenne Twister Example on page 60.
	Notes

	The initialization routine must be called prior to generating any random numbers. Failure to initialize the RNG will result in random number values of zeros.
	See Also

	mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23), mc_rand_XX_0_to_1_d2 (page 24), mc_rand_XX_0_to_1_array_d2 (page 25), mc_rand_XX_minus1_to_1_d2 (page 27), mc_rand_XX_minus1_to_1_array_d2 (page 28), mc_rand_XX_0_to_1_f4 page 30), mc_rand_XX_0_to_1_array_f4 (page 31), mc_rand_XX_minus1_to_1_f4 (page 33), and mc_rand_XX_minus1_to_1_array_f4 (page 34) for related APIs.
	 mc_rand_sb_init

	This interface initializes the Sobol random number generator.
	Description

	Initialize the operating environment of the SB RNG using the seed provided.
	Syntax

	int mc_rand_sb_init (sobol_cntrlblk * p_control, unsigned int count_max_size, unsigned int dimension, vector unsigned char * p_memory, unsigned int size_of_memory);
	Parameters

	p_control [IN]
	Specifies the control block that contains information about the direction table in main memory.
	The user must define this variable as data type sobol_cntrlblck_t as defined in the mc_rand_sb.h header file.
	count_max_size [IN]
	Defines the size of an array of vectors that can be filled with vectors of RNs.
	When using the mc_rand_sb_xx_array_yy(unsigned int count, vector <datatype> ** p_array) APIs, the count parameter must never exceed the value of count_max_size.
	When using the single vector versions (vector <datatype> mc_rand_sobol_xx (void)), set count_max_size = 1. However, larger count_max_size increases the performance of multiple calls to the single vector version of the RNG.
	dimension [IN]
	Defines the dimension of the random numbers.
	The maximum value of dimension depends on the initialization table. If a value above the maximum value is specified the initialization procedure will be aborted. The maximum value of dimension is defined by the direction table and is specified in the sobol_cntrlblk_t as variable u32TableDimension.
	p_memory [IN]
	Defines a pointer to the memory the RNG need to hold the lookup tables and to buffer RNs.
	The required amount of memory in bytes is equal to 640 times the dimension size.
	For needed amount of memory refer to the “Notes” section below.
	size_of_memory [IN]
	Defines the size of the memory to which p_memory points.
	The initialization procedure verifies if the amount of memory is sufficient and aborts if the memory is too small.
	Return Values

	0
	Initialization successful. No error.
	2
	Error. Requested dimension parameter value is greater than the maximum dimension of the look-up table in the p_control structure.
	4
	Error. Requested dimension parameter value is less than 1.
	8
	Error. Look-up table supports random numbers with less than 1 bit only.
	16
	Error. Look-up table supports random numbers with more than 32 bits
	512
	Error. Passed memory area pointed to by p_memory is too small.
	Example

	See Sobol Example on page 61.
	Notes

	The sobol_cntrlblk_t is a key structure in the function of the Sobol RNG. The definition of this structure can be found in /opt/cell/sdk/prototype/usr/spu/include/mc_rand_sb.h for SPU programs and /opt/cell/sdk/prototype/usr/include/mc_rand_sb.h for PPU programs.
	An example of how to initialize this structure can be found in /opt/cell/sdk/prototype/src/examples/monte-carlo/sphere/sobol_init_30_40.h.
	Additionally, key defines are provided in the mc_rand_sb.h file as default values:
	 SOBOL_RUNS Defines the maximal number of elements an array of random number vectors can have. Defaults to 112.
	 SOBOL_DIMENSION Defines the dimension of the created RNs. Defaults to 40.
	 SOBOL_VECTOR_ARRAY_SIZE Calculates the size of the vector array needed as the p_memory parameter.
	It is strongly recommended that users to change the default for SOBOL_RUNS and SOBOL_DIMENSION by using the following code:
	#undef SOBOL_RUNS
	#define SOBOL_RUNS xxx
	#undef SOBOL_DIMENSION
	#define SOBOL_DIMENSION yyy
	Where xxx and yyy are appropriate numbers.
	Instead of using the SOBOL_VECTOR_ARRAY_SIZE literal, users can manually calculate the needed amount of memory by keeping in mind that the following formula:
	<memory needed> = ((<number of runs> +76) * <dimensions> +8) *16.
	See Also

	mc_rand_XX_u4 (page 22), mc_rand_XX_array_u4 (page 23), mc_rand_XX_0_to_1_d2 (page 24), mc_rand_XX_0_to_1_array_d2 (page 25), mc_rand_XX_minus1_to_1_d2 (page 27), mc_rand_XX_minus1_to_1_array_d2 (page 28), mc_rand_XX_0_to_1_f4 page 30), mc_rand_XX_0_to_1_array_f4 (page 31), mc_rand_XX_minus1_to_1_f4 (page 33), and mc_rand_XX_minus1_to_1_array_f4 (page 34) for related APIs.
	 mc_rand_sb_seed

	This interface seeds the Sobol random number generator.
	Description

	Seed the Sobol RNG with the specified value. This seed value represents the index into the Sobol sequence of random numbers.
	Syntax

	void mc_rand_sb_seed (unsigned int seed);
	Parameters

	seed [IN]
	Index into the RNG sequence. This number should be evenly divisible by 4. If a non-multiple is provided, the value of seed will be truncated to the previous multiple of 4.
	Return Values

	None
	Example

	See Sobol Example on page 61.
	Notes

	The Sobol RNG defaults to a seed of 0 after invocation of mc_rand_sb_init().
	See Also

	mc_rand_sb_init (page 17) for related API.
	 Random Number Generation

	Random number generation interfaces provided with the Cell BE Monte Carlo library have consistent APIs across all implementation for a common data type. In general, these interfaces can be divided into routines to return single vectors or an array of vectors.
	The following sections define the random number generation APIs.
	 mc_rand_XX_u4

	This interface is generic across all RNG implementations. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return one random number vector of type unsigned integers with each function call.
	Syntax

	vector unsigned int mc_rand_hw_u4 (void);
	vector unsigned int mc_rand_ks_u4 (void);
	vector unsigned int mc_rand_mt_u4 (void);
	vector unsigned int mc_rand_sb_u4 (void);
	Parameters

	None
	Return Values

	Random numbers
	Random number vector of 4 unsigned integers
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_array_u4(page 23) for related APIs.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_array_u4

	This interface is generic across most RNG implementations with a slight variation for Sobol. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return an array of random number vectors of type unsigned integers with each function call.
	For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces, the random numbers are returned into the array specified by the user. For Sobol, the pointer with the random numbers is returned by the random number generator.
	Syntax

	void mc_rand_hw_array_u4 (unsigned int count, vector unsigned int *array);
	void mc_rand_ks_array_u4 (int count, vector unsigned int *array);
	void mc_rand_mt_array_u4 (int count, vector unsigned int *array);
	vector unsigned int *mc_rand_sb_array_u4 (int count);
	Parameters

	count [IN]
	The number of random number vectors to return.
	array [IN/OUT]
	The pointer to the memory location where the random numbers should be generated. This parameter applies only to the HW, KS, and MT RNGs.
	Return Values

	Random numbers
	An array of random number vectors with 4 unsigned integers. For the HW, KS, and MT RNGs, these numbers are created and stored in the memory location referenced by the array pointer. For the SB RNG, a pointer to these values is returned .
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_u4(page 22) for related APIs.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_0_to_1_d2

	This interface is generic across all RNG implementations. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return one random number vector of type double with each function call. These double precision floating-point random numbers range from 0 up to, but not including, 1.
	Syntax

	vector double mc_rand_hw_0_to_1_d2 (void);
	vector double mc_rand_ks_0_to_1_d2 (void);
	vector double mc_rand_mt_0_to_1_d2 (void);
	vector double mc_rand_sb_0_to_1_d2 (void);
	Parameters

	None
	Return Values

	Random numbers
	Random number vector of 2 double precision floating point numbers.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_0_to_1_array_d2 (page 25) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_0_to_1_array_d2

	This interface is generic across most RNG implementations with a slight variation for Sobol. The value of “xx” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return an array of random number vectors of type double with each function call. These double precision floating-point random numbers range from 0 up to, but not including, 1.
	For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces, the random numbers are returned into the array specified by the user. For Sobol, the pointer with the random numbers is returned by the random number generator.
	Syntax

	void mc_rand_hw_0_to_1_array_d2 (unsigned int count, vector double *array);
	void mc_rand_ks_0_to_1_array_d2 (unsigned int count, vector double *array);
	void mc_rand_mt_0_to_1_array_d2 (unsigned int count, vector double *array);
	vector double *mc_rand_sb_0_to_1_array_d2 (unsigned int count);
	Parameters

	count [IN]
	The number of random number vectors to return.
	array [IN/OUT]
	The pointer to the memory location where the random numbers should be generated. This parameter applies only to the HW, KS, and MT RNGs.
	Return Values

	Random numbers
	An array of random number vectors each with 2 double precision floating point numbers. For the HW, KS, and MT RNGs, these numbers are created and stored in the memory location referenced by the array pointer. For the SB RNG, a pointer to these values is returned.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_0_to_1_d2 (page 24) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_minus1_to_1_d2

	This interface is generic across all RNG implementations. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return one random number vector of type double with each function call. These double precision floating-point random numbers range from, but not including -1 up to, but not including, 1.
	Syntax

	vector double mc_rand_hw_minus1_to_1_d2 (void);
	vector double mc_rand_ks_minus1_to_1_d2 (void);
	vector double mc_rand_mt_minus1_to_1_d2 (void);
	vector double mc_rand_sb_minus1_to_1_d2 (void);
	Parameters

	None
	Return Values

	Random numbers
	Random number vector of 2 double precision floating point numbers.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_minus1_to_1_array_d2 (page 28) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_minus1_to_1_array_d2

	This interface is generic across most RNG implementations with a slight variation for Sobol. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return an array of random number vectors of type double with each function call. These double precision floating-point random numbers range from, but not including -1 up to, but not including, 1.
	For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces, the random numbers are returned into the array specified by the user. For Sobol, the pointer with the random numbers is returned by the random number generator.
	Syntax

	void mc_rand_hw_minus1_to_1_array_d2 (unsigned int count, vector double *array);
	void mc_rand_ks_minus1_to_1_array_d2 (unsigned int count, vector double *array);
	void mc_rand_mt_minus1_to_1_array_d2 (unsigned int count, vector double *array);
	vector double *mc_rand_sb_minus1_to_1_array_d2 (unsigned int count);
	Parameters

	count [IN]
	The number of random number vectors to return.
	array [IN/OUT]
	The pointer to the memory location where the random numbers should be generated. This parameter applies only to the HW, KS, and MT RNGs.
	Return Values

	Random numbers
	An array of random number vectors each with 2 double precision floating point numbers. For the HW, KS, and MT RNGs, these numbers are created and stored in the memory location referenced by the array pointer. For the SB RNG, a pointer to these values is returned.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	 mc_rand_XX_minus1_to_1_d2 (page 27) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_0_to_1_f4

	This interface is generic across all RNG implementations. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return one random number vector of type float with each function call. These single precision floating-point random numbers range from 0 up to, but not including, 1.
	Syntax

	vector float mc_rand_hw_0_to_1_f4 (void);
	vector float mc_rand_ks_0_to_1_f4 (void);
	vector float mc_rand_mt_0_to_1_f4 (void);
	vector float mc_rand_sb_0_to_1_f4 (void);
	Parameters

	None
	Return Values

	Random numbers
	Random number vector of 4 single precision floating point numbers.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_0_to_1_array_f4 (page31) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_0_to_1_array_f4

	This interface is generic across most RNG implementations with a slight variation for Sobol. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return an array of random number vectors of type float with each function call. These single precision floating-point random numbers range from 0 up to, but not including, 1.
	For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces, the random numbers are returned into the array specified by the user. For Sobol, the pointer with the random numbers is returned by the random number generator.
	Syntax

	void mc_rand_hw_0_to_1_array_f4 (unsigned int count, vector float *array);
	void mc_rand_ks_0_to_1_array_f4 (unsigned int count, vector float *array);
	void mc_rand_mt_0_to_1_array_f4 (unsigned int count, vector float *array);
	vector float *mc_rand_sb_0_to_1_array_f4 (unsigned int count);
	Parameters

	count [IN]
	The number of random number vectors to return.
	array [IN/OUT]
	The pointer to the memory location where the random numbers should be generated. This parameter applies only to the HW, KS, and MT RNGs.
	Return Values

	Random numbers
	An array of random number vectors each with 4 single precision floating point numbers. For the HW, KS, and MT RNGs, these numbers are created and stored in the memory location referenced by the array pointer. For the SB RNG, a pointer to these values is returned.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	 mc_rand_XX_0_to_1_f4 (page 30) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_minus1_to_1_f4

	This interface is generic across all RNG implementations. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return one random number vector of type float with each function call. These single precision floating-point random numbers range from, but not including -1 up to, but not including, 1.
	Syntax

	vector float mc_rand_hw_minus1_to_1_f4 (void);
	vector float mc_rand_ks_minus1_to_1_f4 (void);
	vector float mc_rand_mt_minus1_to_1_f4 (void);
	vector float mc_rand_sb_minus1_to_1_f4 (void);
	Parameters

	None
	Return Values

	Random numbers
	Random number vector of 4 single precision floating point numbers.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_minus1_to_1_array_f4 (page 34) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	 mc_rand_XX_minus1_to_1_array_f4

	This interface is generic across most RNG implementations with a slight variation for Sobol. The value of “XX” will be “hw” for Hardware, “ks” for Kirkpatrick-Stoll, “mt” for Mersenne Twister, and “sb” for Sobol.
	Description

	Return an array of random number vectors of type float with each function call. These single precision floating-point random numbers range from, but not including -1 up to, but not including, 1.
	For the hardware-generated, Kirkpatrick-Stoll, and Mersenne Twister interfaces, the random numbers are returned into the array specified by the user. For Sobol, the pointer with the random numbers is returned by the random number generator.
	Syntax

	void mc_rand_hw_minus1_to_1_array_f4 (unsigned int count, vector float *array);
	void mc_rand_ks_minus1_to_1_array_f4 (unsigned int count, vector float *array);
	void mc_rand_mt_minus1_to_1_array_f4 (unsigned int count, vector float *array);
	vector float *mc_rand_sb_minus1_to_1_array_f4 (unsigned int count);
	Parameters

	count [IN]
	The number of random number vectors to return.
	array [IN/OUT]
	The pointer to the memory location where the random numbers should be generated. This parameter applies only to the HW, KS, and MT RNGs.
	Return Values

	Random numbers
	An array of random number vectors each with 4 single precision floating point numbers. For the HW, KS, and MT RNGs, these numbers are created and stored in the memory location referenced by the array pointer. For the SB RNG, a pointer to these values is returned.
	Example

	See Hardware-Generated Example on page 56, Kirkpatrick-Stoll Example on page 58, Mersenne Twister Example on page 60, and Sobol Example on page 61.
	See Also

	mc_rand_XX_minus1_to_1_f4 (page 33) for a related API.
	mc_rand_hw_init (page 14), mc_rand_ks_init (page 15), mc_rand_mt_init (page 16), or mc_rand_sb_init (page 17) for appropriate initialization API.
	Chapter 6. Transformations
	The Cell BE Monte Carlo library transformation routines have similar interfaces with distinct parameters. In general, these routines take one or more vectors of single or double precision floating-point numbers and transform them from a fixed distribution to a normal distribution.
	The Box-Muller and Polar Methods use accept-reject algorithms to transform m inputs into n output numbers, where m > n. Moro’s inversion, however, is a simple algorithm that transforms m inputs into n output numbers, where m = n.
	All of the transformation routines may be invoked directly without an initialization routine.
	 mc_transform_bm_f4

	This interface applies a Box-Muller transformation to a vector of single-precision floating point numbers from an uniform distribution to a normal distribution..
	Description

	Transform a vector of float-typed random numbers from a uniform distribution into a normal distribution and return the new vector.
	Syntax

	vector float mc_transform_bm_f4 (vector float src);
	Parameters

	src [IN]
	An input vector of 4 single-precision floating point numbers, evenly distributed from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 4 floating point numbers with a normal distribution.
	Example

	See Box-Muller Example on page 66.
	See Also

	mc_transform_bm_array_f4 (page 38) for a related API.
	 mc_transform_bm_array_f4

	This interface applies a Box-Muller transformation to an array of single-precision floating point vectors from an uniform distribution to a normal distribution..
	Description

	Transform an array of vector float types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_bm_array_f4 (unsigned int count, vector float *s_rand_array, vector float *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input arrays s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain four single-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold 2*count number of vectors.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain 2*count number of single-precision floating point vectors with values having a normal distribution.
	Example

	See Box-Muller Example on page 66.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_bm_f4 (page 37) for a related API.
	 mc_transform_bm_d2

	This interface applies a Box-Muller transformation to a vector of double-precision floating point numbers from an uniform distribution to a normal distribution.
	Description

	Transform a vector of double-typed random numbers from a uniform distribution into a normal distribution and return the new vector.
	Syntax

	vector double mc_transform_bm_d2 (vector double);
	Parameters

	src [IN]
	An input vector of 2 double-precision floating point numbers, evenly distributed from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 2 floating point numbers with a normal distribution.
	Example

	See Box-Muller Example on page 66.
	See Also

	mc_transform_bm_array_d2 (page 40) for a related API.
	 mc_transform_bm_array_d2

	This interface applies Moro’s Inversion to transform an array of double-precision floating point vectors from an uniform distribution to a normal distribution..
	Description

	Transform an array of vector double types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_bm_array_d2 (unsigned int count, vector double *s_rand_array, vector double *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input array s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain 2 double-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold 2*count number of vectors.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain 2*count number of double-precision floating point vectors with values having a normal distribution.
	Example

	See Box-Muller Example on page 66.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_bm_d2 (page 39) for a related API.
	 mc_transform_mi_f4

	This interface applies Moro’s Inversion to transform a vector of single-precision floating point numbers from an uniform distribution to a normal distribution..
	Description

	Transform a vector of float-typed random numbers from a uniform distribution into a normal distribution and return the new vector.
	Syntax

	vector float mc_transform_mi_f4 (vector float src);
	Parameters

	src [IN]
	The input vector of 4 single-precision floating point numbers, evenly distributed from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 4 floating point numbers with a normal distribution.
	Example

	See Moro’s Inversion Example on page 68.
	See Also

	mc_transform_mi_array_f4 (page 42) for a related API.
	 mc_transform_mi_array_f4

	This interface applies Moro’s Inversion to transform an array of single-precision floating point vectors from an uniform distribution to a normal distribution..
	Description

	Transform an array of vector float types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_mi_array_f4 (unsigned int count, vector float *s_rand_array, vector float *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input array s_rand_array.
	s_rand_array [IN]
	The input array of vectors.
	Each vector will contain four single-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of single-precision floating point vectors with values having a normal distribution.
	Example

	See Moro’s Inversion Example on page 68.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_mi_f4 (page 41) for a related API.
	 mc_transform_mi_d2

	This interface applies Moro’s Inversion to transform a vector of double-precision floating point numbers from an uniform distribution to a normal distribution..
	Description

	Transform a vector of double-typed random numbers from a uniform distribution into a normal distribution and return the new vector.
	Syntax

	vector double mc_transform_mi_d2 (vector double src);
	Parameters

	src [IN]
	The input vector of 2 double-precision floating point numbers, evenly distributed from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 2 floating point numbers with a normal distribution.
	Example

	See Moro’s Inversion Example on page 68.
	See Also

	mc_transform_mi_array_d2 (page 44) for a related API.
	 mc_transform_mi_array_d2

	This interface applies Moro’s Inversion to transform an array of double-precision floating point vectors from an uniform distribution to a normal distribution..
	Description

	Transform an array of vector double types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_mi_array_d2 (unsigned int count, vector double *s_rand_array, vector double *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input array s_rand_array.
	s_rand_array [IN]
	The input array of vectors.
	Each vector will contain 2 double-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of double-precision floating point vectors with values having a normal distribution.
	Example

	See Moro’s Inversion Example on page 68.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_mi_d2 (page 43) for a related API.
	 mc_transform_po_f4

	This interface applies a Polar-Method transform to the results from a specified random number generator to create and return vector with a normal distribution of single-precision floating point numbers.
	Description

	Transform the vector results from an RNG into a normal distribution and return the new vector.
	Syntax

	vector float mc_transform_po_f4 (vector float (*p_rng) (void));
	Parameters

	p_rng [IN]
	A function pointer to a RNG that returns a vector of type float from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 4 single-precision floating point numbers with a normal distribution.
	Example

	See Polar Method Example on page 70.
	See Also

	mc_transform_po_array_f4 (page 46) and mc_transform_reject_po_array_f4 (page 47) for related APIs.
	 mc_transform_po_array_f4

	This interface applies a Polar-Method transform to the source numbers, using specified random number generator as needed, to create and return an array of vectors with a normal distribution of single-precision floating point numbers.
	Description

	Transform an array of vector float types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_po_array_f4 (unsigned int count, vector float *s_rand_array, vector float *t_rand_array, vector float (*p_rng) (void));
	Parameters

	count [IN]
	The number of vectors contained in the input arrays s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain four single-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	p_rng [IN]
	A function pointer to a RNG that returns a vector of type float from 0 up to, but not including 1.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of single-precision floating point vectors with values having a normal distribution.
	Example

	See Polar Method Example on page 70.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_po_f4 (page 45) and mc_transform_reject_po_array_f4 (page 47) for related APIs.
	 mc_transform_reject_po_array_f4

	This interface applies a Polar-Method transform to the source numbers to create and return an array of vectors with equal or fewer elements than the input vector and a normal distribution of single-precision floating point numbers.
	Description

	Transform an array of vector float types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	unsigned int mc_transform_reject_po_array_f4 (unsigned int count, vector float *s_rand_array, vector float *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input arrays s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain four single-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	The actual number of elements in the array will returned on the call.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of single-precision floating point vectors with values having a normal distribution.
	Count of elements in t_rand_array
	The number of elements written into the t_rand_array.
	This value will be less-than or equal-to the value of the count input parameter.
	Example

	See Polar Method Example on page 70.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_po_f4 (page 45) and mc_transform_po_array_f4 (page 46 for related APIs.
	 mc_transform_po_d2

	This interface applies a Polar-Method transform to the results from a specified random number generator to create and return vector with a normal distribution of double-precision floating point numbers.
	Description

	Transform the vector results from an RNG into a normal distribution and return the new vector.
	Syntax

	vector double mc_transform_po_d2 (vector double (*p_rng) (void));
	Parameters

	p_rng [IN]
	A function pointer to a RNG that returns a vector of type double from 0 up to, but not including 1.
	Return Values

	New vector
	A vector of 2 double-precision floating point numbers with a normal distribution.
	Example

	See Polar Method Example on page 70.
	See Also

	mc_transform_po_array_d2 (page 50) and mc_transform_reject_po_array_d2 (page 52) for related APIs.
	 mc_transform_po_array_d2

	This interface applies a Polar-Method transform to the source numbers, using specified random number generator as needed, to create and return an array of vectors with a normal distribution of double-precision floating point numbers.
	Description

	Transform an array of vector double types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	void mc_transform_po_array_d2 (unsigned int count, vector double *s_rand_array, vector double *t_rand_array, vector double (*p_rng) (void));
	Parameters

	count [IN]
	The number of vectors contained in the input arrays s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain 2 double-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	p_rng [IN]
	A function pointer to a RNG that returns a vector of type double from 0 up to, but not including 1.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of double-precision floating point vectors with values having a normal distribution.
	Example

	See Polar Method Example on page 70.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_po_d2 (page 49) mc_transform_reject_po_array_d2 (page 52) for related APIs.
	 mc_transform_reject_po_array_d2

	This interface applies a Polar-Method transform to the source numbers to create and return an array of vectors with equal or fewer elements than the input vector and a normal distribution of double-precision floating point numbers.
	Description

	Transform an array of vector float types from a uniform distribution into a normal distribution and return the new array.
	Syntax

	unsigned int mc_transform_reject_po_array_d2 (unsigned int count, vector double *s_rand_array, vector double *t_rand_array);
	Parameters

	count [IN]
	The number of vectors contained in the input arrays s_rand_array.
	s_rand_array [IN]
	An input array of vectors.
	Each vector will contain two double-precision floating point numbers ranging from 0 up to, but not including, 1.
	The number of vectors pointed to by the array is contained in the count parameter.
	t_rand_array [IN/OUT]
	The memory location for the output array of vectors.
	Enough memory should be allocated by the invoking program to hold count number of vectors.
	The actual number of elements in the array will returned on the call.
	Return Values

	New distribution in t_rand_array
	The new data distribution will be written to the memory location specified by the t_rand_array parameter. This array will contain count number of double-precision floating point vectors with values having a normal distribution.
	Count of elements in t_rand_array
	The number of elements written into the t_rand_array.
	This value will be less-than or equal-to the value of the count input parameter.
	Example

	See Polar Method Example on page 70.
	Notes

	The same memory location may be used for the s_rand_array and the t_rand_array parameters.
	See Also

	mc_transform_po_d2 (page 49) and mc_transform_po_array_d2 (page 50) for related APIs.
	Part V. Appendixes
	Appendix A. Examples
	The following sections show examples for each of the random number generators and the distribution transformations.
	More detailed examples can be found in the samples provided in the SDK samples.
	The Pi sample found in /opt/cellsdk/src/samples/monte-carlo/pi/ performs a simple Monte Carlo simulation to calculate the value of pi using the vector versions of the RNG APIs.
	The Sphere sample in /opt/cellsdk/src/samples/monte-carlo/sphere/ performs a more complex simulation to calculate the volume of an n-dimensional sphere, using both vector and array RNG APIs along with various levels of optimization in the Monte Carlo simulation.
	 Hardware-Generated Example

	The following C example initializes the hardware RNG and then generates integer and double-precision numbers for display. Vector data is extracted using C union statements.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	int main(void) {
	
	 int i;
	 // Unions for scalar data extraction
	 union vecInt {
	 vector unsigned int vec_int;
	 unsigned int scalar_int[4];
	 };
	 union vecIntArray {
	 vector unsigned int vec_int_array[10];
	 unsigned int scalar_int_array[40];
	 };
	 union vecDbl {
	 vector double vec_double;
	 double scalar_double[2];
	 };
	 union vecDblArray {
	 vector double vec_double_array[10];
	 double scalar_double_array[20];
	 };
	 // Random numbers
	 union vecInt oneInt;
	 union vecIntArray tenInts;
	 union vecDbl oneDouble;
	 union vecDblArray tenDoubles;
	 // Initialize HW RNG and check for support
	 if (0 != mc_rand_hw_init()) {
	 printf("The HW RNG is not supported\n");
	 return -1;
	 }
	 // Generate single vector random numbers
	 oneInt.vec_int = mc_rand_hw_u4();
	 oneDouble.vec_double = mc_rand_hw_0_to_1_d2();
	 // Generate array of vectors
	 mc_rand_hw_array_u4(10,tenInts.vec_int_array);
	 mc_rand_hw_minus1_to_1_array_d2(10,
	 tenDoubles.vec_double_array);
	 // Display single vectors
	 printf("vec_double = %e %e\n",
	 oneDouble.scalar_double[0],
	 oneDouble.scalar_double[1]);
	 printf("vec_int = %u %u %u %u\n",
	 oneInt.scalar_int[0],
	 oneInt.scalar_int[1],
	 oneInt.scalar_int[2],
	 oneInt.scalar_int[3]);
	 // Display array of vectors
	 int j=0, k=0;
	 for (i=0;i<10;i++)
	 {
	 j = i*4;
	 k = i*2;
	 printf("vec_int_array[%d] = %u %u %u %u\n",i,
	 tenInts.scalar_int_array[j],
	 tenInts.scalar_int_array[j+1],
	 tenInts.scalar_int_array[j+2],
	 tenInts.scalar_int_array[j+3]);
	 printf("double_array[%d] = %e %e\n",i,
	 tenDoubles.scalar_double_array[k],
	 tenDoubles.scalar_double_array[k+1]);
	 }
	 return 0;
	}
	 Kirkpatrick-Stoll Example

	Like the preceding hardware RNG, the following C example initializes the Kirkpatrick-Stoll RNG and generates integer and double-precision numbers for display. This time, however, the program extracts scalar data from the vectors by using pointer addressing.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	int main(void) {
	
	 int i;
	 // Pointers for scalar data extraction
	 unsigned int * p_int;
	 double * p_double;
	 // Random numbers
	 vector unsigned int vec_int;
	 vector unsigned int vec_int_array[10];
	 vector double vec_double;
	 vector double vec_double_array[10];
	 // Initialize KS RNG
	 mc_rand_ks_init(4711U);
	 // Generate single vector random numbers
	 vec_int = mc_rand_ks_u4();
	 vec_double = mc_rand_ks_0_to_1_d2();
	 // Generate array of vectors
	 mc_rand_ks_array_u4(10,vec_int_array);
	 mc_rand_ks_minus1_to_1_array_d2(10,vec_double_array);
	 // Display single vectors
	 p_double = (double *)&vec_double;
	 p_int = (unsigned int *)&vec_int;
	 printf("vec_double = %e %e\n",
	 p_double[0],p_double[1]);
	 printf("vec_int = %u %u %u %u\n",
	 p_int[0],p_int[1],p_int[2],p_int[3]);
	 // Display array of vectors
	 p_double = (double *)vec_double_array;
	 p_int = (unsigned int *)vec_int_array;
	 for (i=0;i<10;i++)
	 {
	 printf("vec_int_array[%d] = %u %u %u %u\n",
	 i,p_int[0],p_int[1],p_int[2],p_int[3]);
	 printf("vec_double_array[%d] = %e %e\n",i,
	 p_double[0],p_double[1]);
	 ++p_double;
	 ++p_int;
	 }
	 return 0;
	}
	 Mersenne Twister Example

	Like the preceding two examples, this C program utilizes a Mersenne Twister RNG to generate integer and double-precision numbers for display. To illustrate yet another scalar data extraction technique, the program calls SPU intrinsics to retrieve scalar values.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	int main(void) {
	 int i;
	 vector unsigned int vec_int;
	 vector unsigned int vec_int_array[10];
	 vector double vec_double;
	 vector double vec_double_array[10];
	 mc_rand_mt_init(123456U);
	 vec_int = mc_rand_mt_u4();
	 vec_double = mc_rand_mt_0_to_1_d2();
	 mc_rand_mt_array_u4(10,vec_int_array);
	 mc_rand_mt_minus1_to_1_array_d2(10,vec_double_array);
	 printf("vec_double = %e %e\n",
	 spu_extract(vec_double,0),
	 spu_extract(vec_double,1));
	 printf("vec_int = %u %u %u %u\n",
	 spu_extract(vec_int,0),
	 spu_extract(vec_int,1),
	 spu_extract(vec_int,2),
	 spu_extract(vec_int,3));
	 for (i=0;i<10;i++)
	 {
	 printf("vec_int_array[%d] = %u %u %u %u\n",i,
	 spu_extract(vec_int_array[i],0),
	 spu_extract(vec_int_array[i],1),
	 spu_extract(vec_int_array[i],2),
	 spu_extract(vec_int_array[i],3));
	 printf("vec_double_array[%d] = %e %e\n",i,
	 spu_extract(vec_double_array[i],0),
	 spu_extract(vec_double_array[i],1));
	 }
	 return 0;
	}
	 Sobol Example

	The fourth and final example illustrates the same general ideas as previous examples-- generate integer and double-precision numbers using the Sobol RNG for display.
	The code on the SPU resembles previous examples:
	#include <stdio.h>
	#include <stdlib.h>
	#include <string.h>
	#include <spu_mfcio.h>
	#include <mc_rand.h>
	// Control block from PPU
	sobol_cntrlblck_t sobolCB
	 __attribute__ ((aligned(128)));
	// Memory needed for rand_sb_init. This size is
	// related to the parameters passed to rand_sb_init
	// and must be calculated in conjunction with those
	// parameter values.
	// The formula is:
	// size = (parm 2 + 76) * parm 3 + 8
	// The exact size in this example would be:
	// 1004 = ((256+76)*3)+8
	vector unsigned char rand_sb_mem[1004]
	 __attribute__ ((aligned(128)));
	int main(unsigned long long speid,
	 unsigned long long argp,
	 unsigned long long envp) {
	
	 unsigned int tag = 1;
	 unsigned int tag_mask = 1<<tag;
	 int i,rc;
	 vector float vec_flt;
	 vector float vec_flt_array[10];
	 // DMA control block into local store
	 mfc_get(&sobolCB, (unsigned int)argp, 128, tag,
	 0, 0);
	 mfc_write_tag_mask(tag_mask);
	 mfc_read_tag_status_all();
	 // Initialize sobol generator
	 rc = rand_sb_init(&sobolCB, 256,
	 sobolCB.u32TableDimension, &rand_sb_mem[0],
	 sizeof(rand_sb_mem));
	 if (rc != 0)
	 {
	 printf("Error: Sobol Init failed with RC=%d/n",
	 i);
	 return(-1);
	 }
	 // Generate scalar values
	 vec_flt = rand_sb_0_to_1_f4();
	
	 // Generate array values
	 memcpy(vec_flt_array,
	 rand_sb_minus1_to_1_array_f4(10), 10*16);
	 // Display results
	 printf("vec_float = %e %e %e %e\n",
	 spu_extract(vec_flt,0),
	 spu_extract(vec_flt,1),
	 spu_extract(vec_flt,2),
	 spu_extract(vec_flt,3));
	 for (i=0;i<10;i++)
	 {
	 printf("vec_float_array[%d] = %e %e %e %e\n",i,
	 spu_extract(vec_flt_array[i],0),
	 spu_extract(vec_flt_array[i],1),
	 spu_extract(vec_flt_array[i],2),
	 spu_extract(vec_flt_array[i],3));
	 }
	 return 0;
	}
	Two differences occur between the Sobol RNG and the previous examples. First, the array of vectors RNG interface (mc_rand_sb_array_f4) returns a pointer to the data instead of putting the data in a specified location--producing and additional memcpy not in previous examples.
	Second, this random number generator requires more data for initialization than previous examples. In this example, the data is DMA’d from the PPU. The details of this data are highlighted in the PPU code shown below:
	#include <libspe2.h>
	#include <pthread.h>
	#include <stdlib.h>
	#include <stdio.h>
	#include <sys/wait.h>
	#include <string.h>
	#include <mc_rand_sb.h>
	// sobol direction vector table for 30 bits and 3
	// dimensions
	// Initialized for 5 bits x 3 dimensions
	// dimensions a, b, c
	// bits 0, 1, 2, 3
	// a0 b0 c0
	// a1 b1 c1
	// a2 b2 c2
	// a3 b3 c3
	// a4 b4 c4
	
	// Maximum allowed space dimension
	#undef SOBOL_MAX_DIMENSION
	#define SOBOL_MAX_DIMENSION 3
	// Bit count; assumes sizeof(int) >= 32-bit
	#undef SOBOL_BIT_COUNT
	#define SOBOL_BIT_COUNT 30
	// This table is a 2D array
	// bits x dimensions
	vector unsigned int u32_vecDirections
	[(SOBOL_BIT_COUNT+3)>>2][SOBOL_MAX_DIMENSION] = {
	{ // bits 0-3
	 {536870912, 268435456, 134217728, 67108864}, // a
	 {536870912, 805306368, 671088640, 1006632960},// b
	 {536870912, 268435456, 939524096, 738197504}},// c
	{ // bits 4-7
	 // NOTE: Zeroed values represent unused bits
	 { 33554432, 0, 0, 0 }, // a
	 { 570425344, 0, 0, 0 }, // b
	 { 436207616, 0, 0, 0 }}, // c
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }}, // 2
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }}, // 3
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }}, // 4
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }}, // 5
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }}, // 6
	{ { 0, 0, 0, 0 },
	{ 0, 0, 0, 0 },
	{ 0, 0, 0, 0 }} // 7
	};
	inline static void rand_sobol_set_CB(sobol_cntrlblck_t
	 *sobolCB, unsigned int u32Seed)
	{
	 sobolCB->pu32_vecDirection =
	 &vecDirections[0][0];
	 sobolCB->u32sizeofTable = sizeof(u32_vecDirections);
	 sobolCB->u32TableDimension = SOBOL_MAX_DIMENSION;
	 sobolCB->u32TableBitCount =
	 (SOBOL_BIT_COUNT+3)&0xFFFFFFFC;
	 sobolCB->u32MaxBitCount = SOBOL_BIT_COUNT;
	 sobolCB->u32Seed = u32Seed;
	 return;
	}
	sobol_cntrlblck_t sobolCB
	 __attribute__ ((aligned(128)));
	// This is the pointer to the SPE code, to be used at
	// thread creation time
	extern spe_program_handle_t spu_rand;
	void *ppu_pthread_function(void *arg) {
	 spe_context_ptr_t context =
	 *(spe_context_ptr_t *)arg;
	 unsigned int entry = SPE_DEFAULT_ENTRY;
	 spe_stop_info_t stop_info;
	 int rc = spe_context_run(context,&entry,0,
	 &sobolCB, NULL, &stop_info);
	 if (rc < 0) perror("spe_context_run");
	 pthread_exit(NULL);
	}
	int main(void)
	{
	 // Initialize Sobol control block
	 rand_sobol_set_CB(&sobolCB, 0);
	 // Create SPE thread
	 pthread_t pthread;
	 spe_context_ptr_t spe_context =
	 spe_context_create(0, NULL);
	 spe_program_load(spe_context, &spu_rand);
	 // Start SPE thread
	 pthread_create(&pthread,NULL,&ppu_pthread_function,
	 &spe_context);
	 // Wait for thread completion
	 pthread_join(pthread,NULL);
	 spe_context_destroy(spe_context);
	 printf("PPE: Done\n");
	 return 0;
	}
	The above example shows how to instantiate a 5-bit by 3-dimension initialization table. Zero values in the vecDirections array represent unused initialization values for the example.
	In practice, applications are likely to have their own initialization table for the Sobol algorithm. This table, like vecDirections, will need to be a two-dimensional array with the first index being up to 8 in size to represent the maximum bits and the second index representing the maximum number of RNG dimensions. Applications may elect to create their initialization data or use a basic set found in /opt/cell/sdk/src/samples/monte-carlo/sobol_init_30_40.h.
	Although this example represents a simple instance of the Sobol RNG, even more complex applications will follow a similar structure of instantiating the Sobol initialization table on the PPU, creating and initializing a control block on the PPU, transferring this control to the SPU, and then initializing and invoking the SPU to generate numbers.
	Additional examples of the Sobol and other random number generators can be found in /opt/cell/sdk/src/samples/monte-carlo.
	 Box-Muller Example

	The following example generates data using the Mersenne Twister RNG, transforms it using the Box-Muller algorith, and displays the data. Array-based APIs are used for both number generation and transformation.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	#define NUM_RN_VECTORS 8
	// Source RNs
	vector float rn_source_f4[NUM_RN_VECTORS];
	vector double rn_source_d2[NUM_RN_VECTORS];
	// Transformed RNs
	// NOTE: For Box-Mueller the transform data is twice
	// as large as the source data!!!
	vector float rn_transform_f4[NUM_RN_VECTORS*2];
	vector double rn_transform_d2[NUM_RN_VECTORS*2];
	int main(void){
	 int i;
	
	 float *p_float_source, *p_float_transform;
	 double *p_double_source, *p_double_transform;
	 // Initialize RNG
	 mc_rand_mt_init(4711U);
	 // Generate source data
	 mc_rand_mt_0_to_1_array_f4(NUM_RN_VECTORS,
	 rn_source_f4);
	 mc_rand_mt_0_to_1_array_d2(NUM_RN_VECTORS,
	 rn_source_d2);
	 // Transform data
	 mc_transform_bm_array_f4(NUM_RN_VECTORS,
	 rn_source_f4, rn_transform_f4);
	 mc_transform_bm_array_d2(NUM_RN_VECTORS,
	 rn_source_d2, rn_transform_d2);
	 // Float data
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_float_source =
	 (float *) &rn_source_f4[i];
	 p_float_transform =
	 (float *) &rn_transform_f4[i*2];
	 // Output data
	 printf("Float source: %f, %f, %f, %f\n",
	 p_float_source[0], p_float_source[1],
	 p_float_source[2], p_float_source[3]);
	 printf("Float transform: %f, %f, %f, %f\n",
	 p_float_transform[0], p_float_transform[1],
	 p_float_transform[2], p_float_transform[3]);
	 printf("Float transform: %f, %f, %f, %f\n",
	 p_float_transform[4], p_float_transform[5],
	 p_float_transform[6], p_float_transform[7]);
	 }
	 // Double data
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_double_source =
	 (double *) &rn_source_d2[i];
	 p_double_transform =
	 (double *) &rn_transform_d2[i*2];
	 // Output data
	 printf("Double source: %f, %f\n",
	 p_double_source[0], p_double_source[1]);
	 printf("Double transform: %f, %f\n",
	 p_double_transform[0], p_double_transform[1]);
	 printf("Double transform: %f, %f\n",
	 p_double_transform[2], p_double_transform[3]);
	 }
	 return 0;
	}
	Programs using this transformation APIs need to ensure that the memory allocated for transformed data is twice as large as the source data. The above example accomplishes this by allocated NUM_RN_VECTORS for the source arrays and NUM_RN_VECTORS*2 for the transformed arrays.
	 Moro’s Inversion Example

	Moro’s Inversion algorithm transforms data most simply—one value in, one value out. The following code generates data using the Kirkpatrick-Stoll RNG, transforms it, and displays all data.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	#define NUM_RN_VECTORS 8
	// Source RNs
	vector float rn_source_f4[NUM_RN_VECTORS];
	vector double rn_source_d2[NUM_RN_VECTORS];
	// Transformed RNs
	vector float rn_transform_f4[NUM_RN_VECTORS];
	vector double rn_transform_d2[NUM_RN_VECTORS];
	int main(void){
	 int i;
	
	 float *p_float_source, *p_float_transform;
	 double *p_double_source, *p_double_transform;
	 // Initialize RNG
	 mc_rand_ks_init(4711U);
	 // Generate source data
	 mc_rand_ks_0_to_1_array_f4(NUM_RN_VECTORS,
	 rn_source_f4);
	 mc_rand_ks_0_to_1_array_d2(NUM_RN_VECTORS,
	 rn_source_d2);
	 // Transform data
	 mc_transform_mi_array_f4(NUM_RN_VECTORS,
	 rn_source_f4, rn_transform_f4);
	 mc_transform_mi_array_d2(NUM_RN_VECTORS,
	 rn_source_d2, rn_transform_d2);
	 // Float data
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_float_source = (float *) &rn_source_f4[i];
	 p_float_transform = (float *) &rn_transform_f4[i];
	 // Output data
	 printf("Float source: %f, %f, %f, %f\n",
	 p_float_source[0], p_float_source[1],
	 p_float_source[2], p_float_source[3]);
	 printf("Float transform: %f, %f, %f, %f\n",
	 p_float_transform[0], p_float_transform[1],
	 p_float_transform[2], p_float_transform[3]);
	 }
	 // Double data
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_double_source =
	 (double *) &rn_source_d2[i];
	 p_double_transform =
	 (double *) &rn_transform_d2[i];
	 // Output data
	 printf("Double source: %f, %f\n",
	 p_double_source[0], p_double_source[1]);
	 printf("Double transform: %f, %f\n",
	 p_double_transform[0], p_double_transform[1]);
	 }
	 return 0;
	}
	 Polar Method Example

	The Polar Method transformation APIS represents the most complex interfaces due to the accept-reject nature of the algorithm. Most interfaces require a function pointer to a random number generator to allow for generation of more values as needed.
	The following example shows all three types of Polar Method interfaces. The first set of float data is generated using the array interface and transformed using the array interface mc_transform_reject_po_array_f4 which rejects values without replacement.
	The double data is generated using the array interface mc_transform_po_array_d2 and then transformed with rejects being replaced using new values.
	The second set of float data is generated and transformed a vector at a time, using a single API invocation of mc_transform_po_f4.
	#include <stdio.h>
	#include <stdlib.h>
	#include <mc_rand.h>
	#define NUM_RN_VECTORS 8
	// Source RNs
	vector float rn_source_f4[NUM_RN_VECTORS];
	vector double rn_source_d2[NUM_RN_VECTORS];
	// Transformed RNs
	vector float rn_transform_1_f4[NUM_RN_VECTORS];
	vector float rn_transform_2_f4[NUM_RN_VECTORS];
	vector double rn_transform_d2[NUM_RN_VECTORS];
	int main(void){
	 int i, num_transformed;
	
	 float *p_float_source, *p_float_transform;
	 double *p_double_source, *p_double_transform;
	 // Initialize RNG
	 mc_rand_ks_init(4711U);
	 // Generate source data
	 mc_rand_ks_0_to_1_array_f4(NUM_RN_VECTORS,
	 rn_source_f4);
	 mc_rand_ks_0_to_1_array_d2(NUM_RN_VECTORS,
	 rn_source_d2);
	 // Transform float data first time--passing an array,
	 // rejecting data (without an RNG), returning count
	 num_transformed =
	 mc_transform_reject_po_array_f4(NUM_RN_VECTORS,
	 rn_source_f4, rn_transform_1_f4);
	 // Tranform double data using an RNG
	 mc_transform_po_array_d2(NUM_RN_VECTORS,
	 rn_source_d2, rn_transform_d2,
	 mc_rand_ks_minus1_to_1_d2);
	 // Generate and transform floats a second time--
	 // one vector at at time, using an RNG
	 for (i=0; i < NUM_RN_VECTORS; i++)
	 {
	 rn_transform_2_f4[i] =
	 mc_transform_po_f4(mc_rand_ks_minus1_to_1_f4);
	 }
	 // Float data - No RNG
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_float_source =
	 (float *) &rn_source_f4[i];
	 p_float_transform =
	 (float *) &rn_transform_1_f4[i];
	 // Output data
	 printf("Float source: %f, %f, %f, %f\n",
	 p_float_source[0], p_float_source[1],
	 p_float_source[2], p_float_source[3]);
	 if (i < num_transformed)
	 {
	 printf(
	 "Float transform (Reject): %f, %f, %f, %f\n",
	 p_float_transform[0], p_float_transform[1],
	 p_float_transform[2], p_float_transform[3]);
	 }
	 }
	 // Double data
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_double_source =
	 (double *) &rn_source_d2[i];
	 p_double_transform =
	 (double *) &rn_transform_d2[i];
	 // Output data
	 printf("Double source: %f, %f\n",
	 p_double_source[0], p_double_source[1]);
	 printf("Double transform: %f, %f\n",
	 p_double_transform[0], p_double_transform[1]);
	 }
	 // Float data - RNG
	 for (i=0; i< NUM_RN_VECTORS; i++)
	 {
	 // Set pointer to current location
	 p_float_transform =
	 (float *) &rn_transform_2_f4[i];
	 // Output data
	 printf("Float transform (RNG): %f, %f, %f, %f\n",
	 p_float_transform[0], p_float_transform[1],
	 p_float_transform[2], p_float_transform[3]);
	 }
	 return 0;
	}
	Appendix B. Getting Help or Technical Assistance
	If you need help, service, or technical assistance or just want more information about IBM products, you will find a wide variety of sources available from IBM to assist you. This appendix contains information about where to go for additional information about IBM and IBM products and whom to call for service, if it is necessary.
	Using the Documentation

	Information about your IBM hardware or software is available in the documentation that comes with the product. That documentation can include printed documents, online documents, readme files, and help files. See the troubleshooting information in your documentation for instructions for using diagnostic programs. The troubleshooting information or the diagnostic programs might tell you that you need additional or updated device drivers or other software. IBM maintains pages on the World Wide Web where you can get the latest technical information and download device drivers and updates. To access these pages, go to http://www.ibm.com/bladecenter/, click Support, and follow the instructions. Also, some documents are available through the IBM Publications Center at http://www.ibm.com/shop/publications/order/.
	Getting Help and Information from the World Wide Web

	You can locate documentation and other resources on the World Wide Web. Refer to the following web sites:
	 IBM BladeCenter systems, optional devices, services, and support information at http://www.ibm.com/bladecenter/. For service information, select Support.
	 developerWorks® Cell/B.E. Resource Center at http://www.ibm.com/developerworks/power/cell/. To access the Cell/B.E. forum on developerWorks, select Community.
	 The Barcelona Supercomputing Center (BSC) Web site at http://www.bsc.es/projects/deepcomputing/linuxoncell.
	 There is also support for the Full-System Simulator and XL C/C++ Compiler through their individual alphaWorks® forums. If in doubt, start with the Cell/B.E. architecture forum.
	 The GNU Project debugger, GDB, is supported through many different forums on the Web, but primarily at the GDB Web site http://www.gnu.org/software/gdb/gdb.html.
	Contacting IBM Support

	To obtain telephone assistance, for a fee or on a support contract, contact IBM Support. In the U.S. and Canada, call 1-800-IBM-SERV (1-800-426-7378), or see http://www.ibm.com/planetwide/ for support telephone numbers.
	Appendix C. Accessibility
	Accessibility features help users who have a physical disability, such as restricted mobility or limited vision, to use information technology products successfully.
	The following list includes the major accessibility features:
	 Keyboard-only operation
	 Interfaces that are commonly used by screen readers
	 Keys that are tactilely discernible and do not activate just by touching them
	 Industry-standard devices for ports and connectors
	 The attachment of alternative input and output devices
	IBM® and accessibility

	See the IBM Accessibility Center at http://www.ibm.com/able/ for more information about the commitment that IBM has to accessibility.
	Appendix D. Notices
	Code License and Disclaimer Information

	IBM grants you a nonexclusive copyright license to use all programming code examples from which you can generate similar function tailored to your own specific needs.
	SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.
	UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
	1. LOSS OF, OR DAMAGE TO, DATA;
	2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL DAMAGES; OR
	3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.
	SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.
	Trademarks

	developerWorks, DB2, IBM, the IBM logo, ibm.com, and PowerPC are registered trademarks of International Business Machines Corporation in the United States, other countries, or both.
	Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.
	Other company, product or service names may be trademarks or service marks of others.

