IBM Full-System Simulator User’s Guide

Modeling Systems based on the
Cell Broadband Engine Processor

Version 3.0

IBM Full-System Simulator User’s Guide
© International Business Machines Corporation (2007). All Rights Reserved.

Printed in the United States of America August 2007.

May only be used pursuant to any IBM License Agreement, or any Addendum to IBM License Agreement. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any computer
language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without
prior written permission of IBM Corporation. IBM Corporation grants you limited permission to make hardcopy or other
reproductions of any machine-readable documentation for your own use, provided that each such reproduction shall carry
the IBM Corporation copyright notice. No other rights under copyright are granted without prior written permission of 1BM
Corporation.

All information contained in this document is subject to change without notice. The information contained in this document
does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or
implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this
document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied
upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made. This
document contains information on products in the design, sampling and/or initial production phases of development. This
information is subject to change without notice, and is provided without warranty of any kind. The document is not intended
for production.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be liable for
damages arising directly or indirectly from any use of the information contained in this document.

U.S. Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract with I1BM
Corporation.

IBM is a registered trademark of International Business Machines Corporation in the United States, other countries, or both.

All §/T/1 rights and copyrights apply. The IBM logo, PowerPC, PowerPC logo, and PowerPC architecture are trademarks of
International Business Machines Corporation in the United States, or other countries, or both.

Linux is a registered trademark of Linus Torvalds. Linux is written and distributed under the GNU General Public License in the
United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
The IBM home page can be found at www.ibm.com.

SystemSImCELLUsersGuide, Version 3.0

Contents

Prefaceo i v
Introduction to the IBM Full-System Simulator ciiiiiiiiiiiiinnnn, 1
SIMUIGTOr OVEIVIEW. . ..o 2
INVOKING the SIMUIATOTo 2
Starting a Simulation IN SMP MOGEo 3
Starting a Simulation with an Alternate Processor Implementation 4
SIMUIALOr BASICS . . . 4
Interacting with the SIMUIAtOr.o 4
Operating-Systerm MOGES. 5

The SystemSim Graphical User Interface ittt iai i 7
Graphical User INterface o 8
The SImuIation Panel. 9
GUIBUIIONS. . 18
SystemSim Command Syntaxand Usageot iiiini i anan e 23
Understanding and Using Simulator COmmands.o 24
Defining and Managing a Simulated Machine 26
Atypicalinitial run SCriPL. ... oo 27
Summary of Top-Level Simulator Commands. 28
Debugging Features in SystemSim ittt 31
Detecting SPU Stack OVEITIOWo 32
Bus errors caused by DMA €ITOISo 33
Kernel debugging 34
Accessingthe Host Environment. ittt ittt ea i an e eannas 37
The Callthru ULty . . .o 38
Bogus NEtWOrk SUPPOITo 38
Bogusnet Tl fUNCHONSo 38
Extended Description of BOGUSNEL SUPPOIT.ot e 39
Setting up TUN/TAP 0N the NOSESYSTEMo oo 39
Setting up a TUN/TAP interface for a NnoON-roOt USEr 39
Configuring SystemSim support for Bogus Net ... 40

The bogus net device driVEr 41
Connecting to the Simulation NOSEo 41

@ International Business Machines Corporation. Al rights reserved. iii

Troubleshooting BogusNet

© IBM Corporation. All rights reserved.

Preface

The IBM Full-System Simulator, internally referred to as “Mambo,” has been developed and refined by the IBM Austin
Research Lab (ARL) in conjunction with several large system design projects built upon the IBM Power architecture.
As an execution-driven, full-system simulator, the IBM Full-System Simulator has facilitated the experimentation and
evaluation of a wide variety of system components for core IBM initiatives. The IBM Full-System Simulator for the Cell
Broadband Engine (Cell/B.E.] Processor, available from the IBM alphaWorks Emerging Technologies web site,
enables development teams both within IBM and externally to simulate a Cell/B.E. processor-based system in order to
develop and enhance application support for this platform.

The /BM Fuil Systern Simulator User’s Guide describes the basic structure and operation of the IBM Full-System
Simulator and its graphic user interface (GUI) and command line user interface.

Intended Audience

This document is intended for designers and programmers who are developing and testing applications that are
designed to run on systems based on the Cell Broadband Engine Processor. Potential users include:

= System and software designers
m Hardware and software tool developers
m Application and product engineers

m Validation engineers

Using This Version of the Guide

This version of the /BM Fuill System Simulator User'’s Guide applies to version 3.0 of the IBM Full-System Simulator for
the Cell Broadband Engine Processor, available from IBM's alphaWorks Emerging Technologies website located at
httpy//www.alphaworks.ibm.com/tech/cellsystemsim.

The guide is organized into topics that cover concepts and procedures for execution and analysis of CBEA
applications. This book includes the following chapters and appendices:

m Chapter 1, Introduction to the IBM Full-Systern Simulator, describes the IBM Full System Simulator developed by
the IBM Austin Research Lab (ARL), and introduces the Cell Broadband Engine Architecture (CBEA] modeled by
the IBM Full-System Simulator.

m Chapter 2, The SystemSim Graphical User Interface, provides an overview of the graphical user interface of the
IBM Full System Simulator

m Chapter 3 SystemSim Command Syniax and Usage, describes the IBM Full System Simulator command
framework and introduces the structure, format, and usage of simulator commands.

@ International Business Machines Corporation. Al rights reserved. %

m Chapter 4 Debugging Features in SystemSim describes some of the simulator's debugging features that are
specifically designed for SPU debugging.

m Chapter 5 Accessing the Host Environment describes several mechanisms that are provided to allow
interactions between the host and simulated systems.

\X/hat’'s New in this Release

Release 3.0 of the IBM Full-System Simulator for the Cell Broadband Engine provides the following enhancements:

m A new fast simulation mode using justin-time translation that improves simulation speed by a factor of 10 or
more on 64-bit host platforms.

m Improved performance models for the PPE and memory subsystems, particularly for configurations with two
Cell/B.E. processors.

= New and enhanced tools for identifying programming errors in Cell/B.E. applications, such as DMA command
errors and SPU stack overflow.

m Support for booting from an emulated IDE?

Conventions

This guide provides screen captures to illustrate example interface elements and uses code samples to represent
example implementations. Your software interface or development environment may vary from these examples
depending on your system and product environment.

The following typographical components are used for defining special terms and command syntax:

Table 2-1. Typographical Conventions

Convention Description

Bold typeface Represents literal information, such as:

Information and controls displayed on screen, including menu options,
application pages, windows, dialogs, and field names.

Commands, file names, and directories.

In-ine programming elements, such as function names and XML elements
when referenced in the main text.

lalcs typeface ltalics font is used to emphasize new concepts and terms, and to stress
important ideas. Additionally, book and chapter titles are displayed in italics.

Sans serif typeface Represents example code output, such as XML output or C/C++ code
examples.

Italic sans serif words or charactersin code and commands
represent values for variables that you must supply, such as arguments to
commands or path names for your particular system. For example:

cd /users/your_nane

... ([Horizontal or Vertical ellipsis) In format and syntax descriptions, an ellipsis indicates that some material has
been omitted to simplify a discussion.

{ } (Braces) Encloses a list from which you must choose an item or information in syntax
descriptions.
[] (Brackets) Encloses optional items in format and syntax descriptions. For example, in

the statement SELECT [DI STI NCT], DI STI NCT is an optional keyword.

Vi

Freface @ IBM Corporation. All rights reserved.

Table 2-1. Typographical Conventions

Convention Description
| (Vertical rule) Separates items in a list of choices enclosed in { } (braces) in format and
syntax descriptions.
UPPERCASE Indicates keys or key combinations that you can use. For example, press
CTRL + ALT + DEL.
Hyperlink Web-based URIs are displayed in blue text to denote a virtual link to an

external document. For example:_http;//www.ibm.com

The note block denotes information that emphasizes a concept or provides

NOTE This s note text peripheral information.

Related Guides and Recommended Reference

The IBM Full-System Simulator

Ferformance Analysis with the IBM FulSystern Simuiator describes facilities and technigues for application and system
performance analysis using the IBM Full-System Simulator. This includes facilities to capture and process statistics on
the performance of computation kernels, library routines, and full applications in the context of a full-system
execution. Performance Analysis with the IBM FullSysiern Simulator is commonly distributed with alphaWorks
releases in the docs directory as SystemSim.PerfAnalysis.pdf.

The simulator's command interface is implemented as an extension of the Tool Control Language (Tcl), and the
graphical user interface is implemented in the Tk package. Information about Tcl and Tk syntax and features can be
found in:

m Factical Frogramming in 1cl and Tk by Brent B. Welch. Prentice Hall, Inc.

The Cell/B.E. processor

Documentation for the Cell/B.E. processor is available in the IBM online technical library at:

http://www.ibm.com/chips/techlib/techlib.nst/products/Cell_Broadband Engine

Among the documents in this library, the following are particularly helpful in understanding the operation of the IBM
Full- System Simulator:

m (el Broadband Engine Architecture
m Cel Broadband Engine Frogramming Handbook

m (el Broadband Engine Registers

PowerPC Base

The following documents can be found on the developerWorks Web site at:

http://www.ibm.com/developerworks/eserver/libran

m PowerPC Architecture Book, Version 202

. Book | FowerPC User instruction Set Architecture
. Book II: PowerPC Virtual Enviroriment Architecture

s Book li: PowerPC Operating Environment Architecture

Freface Vil

Contacting the IBM Full-System Simulator Development Team

The IBM Full-System Simulator development team at ARL is very interested in hearing from you about your experience
with the IBM Full-System Simulator and its supporting information set. Should you have guestions or encounter any
issues with the IBM Full-System Simulator, visit the project forum at
http,//wwwv.alphaworks.ibm.com/tech/cellsystemsimy/forum.

Vi Freface @ IBM Corporation. All rights reserved.

CHAPTER 1

Introduction to the IBM
Full-System Simulator

This chapter provides an overview of the IBM Full System Simulator, SystemSim, developed
by the IBM Austin Research Lab (ARL), and provides concepts and procedures for using the
simulator for the Cell Broadband Engine Processor. It also describes configuration
parameters for setting up and running the simulation environment in standalone and Linux
mode. Topics in this chapter include:

s Simulator Overview

s lnvoking the Simulator

s Starung a Simuilation in SMFP Moae

o Starung a Simuiation with an Allernate Frocessor mplermeniation

. Simulator Basics

@ International Business Machines Corporation. Al rights reserved. 1

Simulator Overview

The IBM Full-System Simulator for the Cell Broadband Engine is a generalized simulator that can be configured to
simulate a broad range of full-system configurations. It supports /uncaonal simuianon of complete systems based on
the Cell Broadband Engine processor, including simulation of the PPE, SPUs, MFCs, memory, disk, network, and
system console. The SDK, however, provides a ready-made configuration of the simulator for Cell Broadband Engine
system development and analysis. The simulator also includes support for performance simuiation (or timing
simulation) of certain components to allow users to analyze performance of Cell Broadband Engine applications. It
can simulate and capture many levels of operational details on instruction execution, cache and memory subsystems,
interrupt subsystems, communications, and other important system functions.

Figure 1-1 shows the simulation stack. The simulator is part of the software development kit (SDK), which is available
through IBM alphaWorks Emerging Technologies at http://www.alphaworks.ibm.com/tech/cellsystemsim.

Call-thru Application User Application

- LINUX OS

IBM FULL-SYSTEM SIMULATION INFRASTRUCTURE
(SystemSim)

CELL Broadband Engine Processor Model

Core Simulation Infrastructure

Debugging Interfaces
Trace Output
Visualization Interfaces

HOST PLATFORM

(Linux on erPC

Figure -1 Simulator Stack for the Cell Broadband Engine

If accurate timing information and performance statistics are not required, the simulator can be used in its /unctionar-
only mode, simulating the architectural behavior of the system to test the functions and features of a program. For
performance analysis, the simulator can be used in perforrnance simuiation mode. Simulator configurations are
extensible and can be modified using Tool Command Language (Tcl) commands to produce the type and level of
analysis required.

The simulator is a general tool that can be configured for a broad range of microprocessors and hardware
simulations. The SDK, however, provides a ready-made configuration of the simulator for Cell Broadband Engine
system development and analysis.

Invoking the Simulator

The simulator is invoked using the systemnsim command. This command is in the bin directory of the systemsim-cell
release, which should be added to the user's PATH before invoking systemsim.

NOTE By default, the simulator is installed in the /opt/ibm/systemsim-cell directory. This directory will be
used in all the examples shown in this book.

When the simulator starts, it loads an initial run script which typically configures and initializes the simulated machine.
The name of the initial run script can be passed to systemsim with the -f option. When not specified on the command
line, the simulator will look in the current directory for the file .systemsim.tcl, and if present, will use this file as the initial
run script. Otherwise, it will use the file lib/cell/systemsim.tcl provided with the systemsim-cell release. When specified

2

Invoking the Simulator © IBM Corporation. All rights reserved.

http://www-128.ibm.com/developerworks/power/cell
http://www-128.ibm.com/developerworks/power/cell

using the -f option, the name of the initial run script can contain an absolute or relative path. The simulator searches
for Initial run scripts with a relative path by first looking in the current directory, and then in the lib/cell directory of the
systemsim-cell release, and finally in the lib directory of the systemsim-cell release. If the simulator fails to find the initial

run script specified with the -f option, it issues an error message and exits.

It is generally the task of the initial run script to locate the operating system and filesystem images to be used by
simulated machine. For the Cell simulator, the default initial run script searches for a Linux kernel image named
vmlinux and a filesystem image named sysroot_disk. The script will look first in the current directory and then in the
systemsim-cell/images/cell directory, and uses the first instance it finds for these images. If the script fails to find either
of these images in one of these locations, it will print an error message and terminate the simulator.

The following examples illustrate various ways to invoke the simulator. These examples assume that the simulator was
installed into /opt/ibm/systemsim-cell.

1. Tostart the simulator with the GUI window enabled, specify the -g" option on the command line when
invoking systemsim. For example, to run the simulator with the GUI using either the user’s .systemsim.tcl or the
simulator’s lib/cell/systemsim.tcl as the initial run script, issue:

PATH=/ opt /i bml syst ensi m cel | / bi n: $PATH systensim -g

2. Torun the simulator without the GUI, issue:

PATH=/ opt /i bml syst ensi m cel | / bi n: $PATH syst ensi m

If the user has created a run script named .systemsim.tcl in the current directory, the simulator will use this as the
initial run script. Otherwise, the simulator uses systemsim.tcl in the lib/cell directory of the systemsim-cell release
as the initial run script.

3. Torun the simulator without the gui, without a console window (-n), in quiet mode (-q), using the initial run
script myrun.tcl, issue:

PATH=/ opt /i bm syst ensi m cel | / bi n: $PATH systemsim-n -q -f nyrun.tcl

When the simulator starts, the window in which it was started becomes the simulator command window where you
can enter simulator commands. The simulator also creates the console window (unless this was disabled with -n)
which is initially labeled UARTOIN the window's title bar, and a GUI window If this was requested with the -g option.

Starting a Simulation in SMP Mode

The default system configuration that is used when the simulator is started is a system with a single Cell Broadband
Engine processor. Beginning in Version 1.1, the simulator provides a means to specify an alternate system
configuration that uses two Cell Broadband Engine processors, referred to as SMP mode or Dual BE mode. There are
a variety of ways to specify the SMP configuration, but for most users, the best approach is to simply use an alternate
initial run script provided with the simulator. This script is called config_smp.tcl, and is located in the lib/cell directory
of the systemsim-cell release. To use this run script to start the simulator with a configuration with two Cell Broadband
Engine processors, issue:

PATH=/ opt /i bm syst ensi m cel | / bi n: $PATH systensi m -f config_snp.tcl

The config_smp.tcl script can also be sourced, using the Tcl source command, from within a user’s run script, which
allows scripted simulator executions for SMP configurations.

There is also another approach to configuring the simulator to use an SMP mode configuration. This approach
utilizes a special procedure, called config_hook, which is called from the lib/cell/systemsim.tcl file to modify the
configuration before the machine is instantiated. In this approach, the config_dual_be command is used to modify
the configuration to have two Cell Broadband Engine processors. The following example mySMPsim.tcl file illustrates

Introduction to the IBM FulkSystem Simulator ‘ 3

a custom initial run script containing sample code that the config_hook procedure to issue the config_dual_be
command to modify the system configuration.

top-level script to set SMP npde configuration

proc config_hook {conf} {
config_dual _be $conf

}

QahwONRO

source .systensimtcl

The config_hook procedure is a general mechanism to modify the configuration for a simulated machine. In
particular, line 3 configures the machine to run in SMP mode. You can add additional configuration settings to the
config_hook procedure in the same manner.

1. Tostart the simulator with the GUI window enabled using the initial run script mySMPsim.tcl that contains newly
defined SMP mode setting issue:
PATH=/ opt /i bm syst emsi m cel | / bi n: $PATH systensim-g -f mySMPsimtcl

The simulator GUI is launched, in which each BE and its PPE and SPE components are displayed in the vertical
panel. See Chapter 2, “The SystemSim Graphical User Interface” for more information about GUI elements and

windows.

2. Torun the simulator without the gui using the initial run script mySMPsim.tcl that contains newly defined SMP
mode setting issue:

PATH=/ opt /i bm syst enmsi m cel | / bi n: $PATH systensim -f nmySMPsimtcl

Starting a Simulation with an Alternate Processor Implementation

IBM has announced plans to develop a new CBEA-compliant processor with a fully pipelined, enhanced double
precision SPU. Beginning in Version 2.1, the simulator provides a model of this planned future processor. There are a
variety of ways to create and run simulations using this new processor model, but for most users, the best approach
is to simply use an alternate initial run script provided with the simulator. This script is called config_edp_smp.tcl, and
is located in the lib/cell directory of the systemsim-cell release. This initial run script creates an SMP configuration in
which both processors have the fully pipelined, enhanced double precision SPUs. To use this run script, issue:

PATH=/ opt /i bm syst enmsi m cel | / bi n: $PATH systensi m -f config_edp_snp. tcl

Simulator Basics

Interacting with the Simulator

There are two ways to interact with the simulator:
® [ssuing commands to the simulated systerm
® [ssuing commands to the simuiator

The simulated system is the Linux environment on top of the simulated Cell Broadband Engine, where you run and
debug programs. You interact with it by entering commands at the Linux command prompt, in the cornsole winaow.
The console window is a Linux shell of the simulated Linux operating system.

You can also control the simulator itself, configuring it to do such tasks as collect and display performance statistics on
particular SPEs, or set breakpoints in code. These commands are entered at the simulator command line in the
simuiator command window, or using the equivalent actions in the graphical user interface (GUI). The GUI is a

4

Searung a Simuiation with an Alternate Frocessor lmplementation @ IBM Corporation. All nights reserved.

graphical means of interacting with the simulator. The GUI is described in “The SystemSim Graphical User Interface”
on page /.

Figure 1-2 shows the simulator windows, and the layers with which they communicate.

Command Window GUI Window Console Window
systemsi m % oo 2| [[user@ringup /1*
F = k] = ... moIncie
e ")
-
Ijp¥ Ja [y | d ke i w
L TE R LLEE:.] Al-1u:m

v v _

Linux on Simulation
— Simulator
Cell Simulation: mysim
IBM Full-Systemn Simulator

Base

Linux Operating System | Simulator
Hosting
Environment

Base Processor

Figure 1-2. Simulator Structure and Screens

All simulator commands must be entered at the prompt in the command window (that is, the window in which the
simulator was started). Some of the important commands are shown in Table 1-1:

Table 1-1. Top-level commands for the IBM Full-System Simulator for the Cell Broadband Engine

Simulator Command Description
quit Closes the simulation and exits the simulator.
help Displays a list of the available simulator commmands.
mysim go Starts or continues the simulation. The first time it is issued, the simulator boots

the Linux operating system on the simulation.

mysim spu n set model node Sets SPEn into model mode, where n is a value from O to 7 and node is pipeline,
instruction. or fast.

mysim spu n stats print Displays to the simulator command window, the performance analysis statistics
collected on SPU7, where n is a value from 0 to 7. Statistics are only collected
when the SPU is executing in pipeline mode.

The simulator prompt is displayed in the command window when the simulation is stopped, or paused. When the
simulation is running, the command window also displays a copy of the output to the console window and
simulation-cycle information every few seconds, and the prompt is not available. To stop the simulation and get back
the prompt—use the Ctr-C key sequence. This will stop the simulation, and the prompt will reappear.

Operating-System Modes

A key attribute of the IBM Full-System Simulator is its ability to boot and run a complete PowerPC system. By booting
an operating system, such as Linux, the IBM Full-System Simulator can execute many typical application programs

Introduction to the IBM FulkSystem Simulator 5

that utilize standard operating system functionality. Alternatively, applications can be run in standalone mode, in
which all operating system functions are supplied by the simulator and normal operating system effects do not occur,
such as paging and scheduling. The IBM Full-System Simulator can also execute SPU programs in standalone mode
on a given SPU. These two approaches to running applications on the simulator are referred to as Linux mode and
standalone mode.

m Linux Moge. In Linux mode, after the simulator is configured and loaded, the simulator boots the Linux
operating system on the simulated system. At runtime, the operating system is simulated along with the running
programs. The simulated operating system takes care of all the system calls, just as it would in a nonsimulation
(real) environment.

m Slandalone Mode. In standalone mode, the application is loaded without an operating system. Standalone
applications are user-mode applications that are normally run on an operating system. On a real system, these
applications rely on the operating system to perform certain tasks, including loading the program, address
translation, and system-call support. In standalone mode, the simulator provides some of this support, allowing
applications to run without having to first boot an operating system on the simulator.

However, there are limitations that apply when building an application to be loaded and run by the simulator
without an operating system. For example, applications should be linked statically with any libraries they require since
the standard operating system shared libraries are not available in standalone mode. Another example is support for
virtual memory address translation. Typically, the operating system provides address-translation support. Since an
operating system is not present in standalone mode, the simulator loads executables without address translation, so
that the effective address is the same as the real address. Therefore, all addresses referenced in the executable must
be valid real addresses. If the simulator has been configured with 64 MB of memory, all addresses must fit in the
range of x'0" to X' 3FFFFFF".

6

Simuiator Basics © IBM Corporation. All rights reserved.

CHAPTER 2

The SystemSim Graphical
User Interface

This chapter provides an overview of the graphical user interface of the IBM Full System
Simulator. Topics in this chapter include:

e Graphical User Interface

@ International Business Machines Corporation. Al rights reserved. 7

Graphical User Interface

The simulator's GUI offers a visual display of the state of the simulated system, including the PPE and the eight SPEs.

You can view the values of the registers, memory, and channels, as well as viewing performance statistics. The GUI

also offers an alternate method of interacting with the simulator. Figure 2-1 shows the main GUI window that

appears when the GUI is launched.

systemsim-cell]

File

Window Help |
E-C1 mysim Icpu ¥ Cycles: 8,282,777
=3 BED 1
-] PPEQO:D Advance Cycle Amount |1 |
0 PPEOD Advance Cycle | Go | Stop | Service GDB |
B SPED
-5 SPE1 Triggers/Ereakpoints | Update GUI | Debug Controls | Cptions |
|11 SPEZ Emitters | Mode | SPUModes | SPE Visualization |
B SPE3
®-] SPE4 Process-Tree | Process-Tree-5tats | Track All PCs | Event Log |
B-1 SPES E |
B SPEB
ExiE SFE7
------ 1 Load-El-App
------ 1 Load-ElfKernel
Bl BE
-G PRETD
B PPET0: =
{3 SPEO
-] SPE1
B SPEZ
&3 SPE3
E-(] SPE4 £
Funning =talled Halted ‘

Figure 2-1. Graphical User Interface for the Simuiator

The main GUI window has two basic areas: the vertical panel on the left, and the rows of buttons on the right. The

vertical panel represents the simulated system and its components. The rows of buttons are used to control the

simulator.

When the simulator is started it creates a simulated machine containing a Cell Broadband Engine processor and

displays the main GUI window, labeled with the name of the simulator program. When the GUI window first

appears, click the Go button to boot the Linux operating system.

If the simulator is launched in SMP, or dual Cell-based system, mode (see “Starting a Simulation in SMP Mode” on

page 3), the vertical panel in the main window displays each BE with its components, as shown in Figure 2-2.

© IBM Corporation. All rights reserved.

Components

Components

File

Window

systemsim-cell [

B
155
303
1
118 |

BE O E
[E:
E
®|]
E
[E:
E
[E:

308 |
1555
35 |
1 |

O

a8
310 |
1
3.3
1145 |

[E:
BE 1 ;
[E:
E
[E:
e |
[E:
E
[E:
E

15 |
33
15
210 |

)

2 mysim
P BE 0

PPEQ:0:0
PREMD:
SPED
SPE1
SPE2
SPEd
SPE4
SlrlEs
SPEG
SPET

Load-Elf-App
Load-Elf-Kernel
o BE_

PPE1:0:0
ERPE10:]
SPED
SPE1
SEER
SPE3
SPE4
SRES
SPEG
SPEY

Load-El-App
Load-Elf-Kernel
T Memorgviap
-1 Systembdemaory

Advance Cycle Am

|cpu

ount:

| Cycles: 8,282,777

1

|]

Advance Cycle

Go

Stop

Service GDB

Triggers/Breakpoints

Update GLI|

Debug Controls

Cptions

Emitters

Mode

SPU Maodes

SPE Visualization

| Pro

il et Sl Bl

stats

Track All PCs

Event Log

Exit

‘ Bunning Sialled Halted |

Flgure 2-2. Simulator Graphical User Interiace Started in SMF Mode

The Simulation Panel

=]

&3
&3

=]
Flgure 2-3. Froject and

EID mysim
1-[3 PPECOD

PCTrack
PPCCore
PPCStack
GPRegs
FPRegs
PPC_xlate

PED:O:1

PEQD
SPUTrack
SPUCore
SPUChannel
SPURemaory
MFC
MFC_xLate
SPUStats
LS Stats
Madelinstruction
StackChecking:off
Load-Exec

SPE1

DDDDLDDODDD D DDDDDD

Frocessor Folders

m When the main GUI window first appears, the vertical panel contains a single

folder labeled mysim. To see its contents, click on the plus sign (+) in front of the
folder icon. When the folder is expanded, you can see its contents; these include a
PPE (labelled FPEQ.0:0 and FREO.Q], the two threads of the PPE), and eight SPEs
(SPEO.. SFE/). Processor labels are color-coded to indicate the current state
(running/stalled/halted) of the processor. The folders representing the processors
can be further expanded to show the viewable objects and the options and
actions available. Figure 2-3 on page 142 shows the vertical panel with several of
the processor folders expanded.

NOTE When the simulator is launched in SMP mode, each BE (BE O

and BE 1) contains the same contents described in this section.

PPE Components

There are six PPE components visible in the expanded PPE folder: PCTrack,
PCCCore, PPCStack, GPRegs, FPRegs and PPC_Xlate. Double-clicking a folder icon
brings up a window displaying the program-state data. Several of the available

windows are shown in the following figures.

The PPE PC Tracker window is displayed when the user double-clicks on the PCTrack folder icon. An example of this

window is shown in Figure 2-4. The window displays the region of storage containing the instructions that are

currently being executed by the PPE. Each line of the window shows the effective and real address of a word in

The SystemsSim Graphical User Interface 9

storage and its contents in hexadecimal, ASCIl, and as a disassembled PowerPC instruction. The highlighted line in
the window indicates the current position of the program counter. The Step button at the bottom of the window
can be used to advance execution of the system until the PPE completes one instruction. Double-clicking on a line
will toggle a breakpoint on that line (indicated by the red B at the front of the line), and hovering over a register
name in the disassembled instruction will display the contents of that register.

mysim/PPEO:0:0: PC Tracker

0000000000000900 : 0x0000000000000900 : 7C421378 : |B*x : mr. ra, ra
0000000000000904 : 0x0000000000000%04 : TDBL43A6 : }#C* @ mbspr SPRG1,rl13
000000000000090&8 : OxO000000ODO0O0O%068 : 7DB34226 : }*B* : mfspr rl3, 5PRG3

000000000000090C : 0x0000000000000%0C @ F92D008B0 : #-** : std r9,0x80(rl3)
0000000000000910 : 0x00000000000009%10 : F94D0088 : #M** : std rl0,0x88(rl3)
0000000000000%14 @ 0=x0000000000000%14 : 8%4D01cCE : #M=* : 1lbz rl0,021C8(rl3)

0000000000000918 : 0x0000000000000918 : 7D200026 : } *& : mfer r9
|EMO00000000000091c @ 0x000000000000091C @ 2C0A0000 : ,*#* : cmpwi cr0,r10,0

0000000000000920 : 0x0000000000000920 : 4182273C : A*'< : beg erD, $+0x273¢C
0000000000000924 : 0x0000000000000924 : 7D514226 : }QB* : mfspr rl0,SPRGL
0000000000000928 : 0x0000000000000926 : F94DO0A0 : *M#* : std ¥10,160(r13)
000000000000092C : 0x000000000000092¢C : F96DO0SO : #m** : std r11,0x90(r13)
0000000000000930 : 0x0000000000000930 : F9BDOOBE : ###% : std r12,0x98(r13)
0000000000000934 : 0x0000000000000934 : 79AC07C4 : y*** : pldier r12,r13,0,0,31 (DxFFFFFFF|
0000000000000938 : 0x0000000000000936 : 70400026 : j@** : mfmsr r10 7|
Start Addr: |0x0000000000000300 ILength:| 54|t3mectFne1

Reload | Close | Step | GHo |

Figure 2-4. PFE PC Tracker Window

The PPE Core window (PPCCore) shows the contents of all the registers of the PPE, including the general purpose
registers, floating point registers, Vector/SIMD Multimedia Extension registers, and special purpose registers. Figure 2-

5 shows the PPE Core window.

: Core

GPRO 0z00000000CD776208 | [FPRO 0x3FFE977EAOO00000 | . [VIMZRO OxdF74BEF54FADTT834F6ASABDAEAGIA3E [[acer 0z0000000000000000 |
GPRL 0x00000000FFFAFEO0 FERL 0xc000000000000000 VMER L 0x3FF4EBFS3FCDT7833FEASABD3F263838 ASR 0x0000000000000000
GERZ 0xz00000000FB009840 FPRZ 0x4000000000000000 VMHR2 0xFABBF483CDTT8ZDBEASABDZ1531C1C00 BEVE 0=z0000000000000000
GPR3 0xFFFFE302531C1c00 FPR3 0x0000000000000000 WMER3 0x00000000000000000000000000000000 CTR 0x0000000000000000
GPRA 0x0000000001621D10 FPR4 0x0000000000000000 VMR A 0x00000000000000000000000000000000 CTRL 0xB80608001

GERS 0xz0000000000000400 FPRS 0=0000000000000000 VMHR S 0x00000000000000000000000000000000 CTRL 080808001

GERG 0xz0000000000004000 FPR6 0=0000000000000000 WMER G 0x00000000000000000000000000000000 DAER 0x0000000000000000
GERT 0x0000000001632480 FER7 0x0000000000000000 WMHRT 0x00000000000000000000000000000000 DAERX 0x0000000000000000
GPRE 0z0000000001832480 FPRE 0x0000000000000000 VMHRB 0x00000000000000000000000000000000 DR 0z00000000F7FCOO00
GERY 0z4FT74BEF500T4BBFS FPRY 0=0000000000000000 WMHR9 0x00000000000000000000000000000000 DCIDRD 0x0000000000000000
GPR10 0z000000000000001F FPRLO 0x0000000000000000 WMHR1D 0x00000000000000000000000000000000 DCIDRL 0x0000000000000000
GPRLL 0z0000000043300000 FPRL1 0xC0602051E0000000 WMHRLL 0x00000000000000000000000000000000 DEC 0z0001681B

GER1Z 0x0000000028000482 FPR12 0x40602051E0000000 WMHR1Z 0x00000000000000000000000000000000 DRMED 0xz0000000000000000
GPR13 0x0000000001632444 FPR13 0x3FFES7TEADNDOOOD WMHR13 0x00000000000000FF0000000000000000 DRMR1 0x0000000000000000 |
GPR14 0z0000000028004422 FPR14 0x0000000000000000 vMERL14 |0x00000000000000000000000000000000 DRSED 0x0000000000000000
GPR1S 0z0000000000000000 FPRLS 0=0000000000000000 WMHRL S 0x00000000000000000000000000000000 DRSR1L 0=z0000000000000000
GPR16 0z00000000100F4ELS FPR16 0=0000000000000000 WMHRL 6 0x00000000000000000000000000000000 DSISR 0xd2000000

GPR17 0x00000000100E0000 FPRL7 0x0000000000000000 WMHRL 7 0x00000000000000000000000000000000 EAR 000000000

GPR1B 0z00000000100A0000 FPRLE 0=0000000000000000 WMHRLB 0x00000000000000000000000000000000 HDEC 0zDDAEF427

GPR19 0z00000000100E0000 FPR19 0=0000000000000000 WMHR19 0x00000000000000000000000000000000 HIDO 0x0000026600000000
GPR20 0x0000000000000000 FPRZ0 0x0000000000000000 VMR 20 0x00000000000000000000000000000000 HIDL 0x0030000000000000
GPRZ1 0z0000000000000000 FPRZ1 0x0000000000000000 VMHRZ1 0x00000000000000000000000000000000 HID4 0=z0000300000000000
GER22 0z00000000100F4760 FPR22 0=0000000000000000 WMHR22 0x00000000000000000000000000000000 HIDS 0x0000000000000000
GPR23 0z0000000001630000 FPR23 0x0000000000000000 WMHR23 0x00000000000000000000000000000000 HIDG 0x0000000000000000
GPRZ4 0z0000000001830000 FPRZ4 0x0000000000000000 WMHRZ24 0x00000000000000000000000000000000 HID7 0=z0000000000000000
GPRZ5 0z00000000000000LF FPRZS5 0=0000000000000000 WMHR2 5 0x00000000000000000000000000000000 HIOR 0z0000000000000000
GPR26 0z0000000001632460 FPR26 0=0000000000000000 WMHR26 0x00000000000000000000000000000000 HRMOR 0x0000000000000000
GPR27 0x0000000001632480 FPR27 0x0000000000000000 WMHR27 0x00000000000000000000000000000000 HSPRGD 0x0000000000000000
GPRZB 0z00000000018324E0 FPRZE 0=0000000000000000 WMHR 28 0x00000000000000000000000000000000 HSPRGL 0=z0000000000000000
GPR29 0z00000000016832480 FPR29 0=0000000000000000 WMHR29 0x00000000000000000000000000000000 HSREO 0x0000000000000000
GPR30 0x00000000000000C8 FPR30 0x0000000000000000 WMHR30 0x00000000000000000000000000000000 HSRR1 0x0000000000000000
GPR3L 0xzAF74BBFS3FFABBFS | /|FPR3L 0x4330000000000000 | 7 [VMER31 0x00000000000000000000000000000000 7 |IABR 0=z0000000000000000 7|

Figure 2-5. PPE Core Window

The PPE Stack dialog (PPCStack) shows a back trace of the program call stack of the application running on the
selected PPE processor. Figure 2-6 shows the PPC Stack dialog for PPE 0:0:0. When the simulator can locate the
object file that maps to this region of memory, it will display symbol and source file line information for the addresses
in the call stack if these are available. Clicking on the address text within a trace entry will bring up the system memory
dialog to display the contents of memory at this address.

© [BM Corporation. Al ights reserved.

mysim/PPEO:0:0: 5tack Trace

#0 OxCOO0OO0OOOODDACESS in .sparse_init+64 at include/linux/mmzone.h:679

#1 OxCOO00O0D0OO0ACEDC in .sparse_init+196 at mm/sparse.c:222

#2 OxCOOO0O00OO0OO03ESLEd in .setup_arch+d20 at arch/powerpe/kernel/setup 6d.c:546
#3 OxCOO0O0O0D0DOD3EOGAD in .start_kernel+212 at init/main.c:510

Figure 2-6. PPC Stack Trace Dialog Window

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be viewed separately by double-
clicking on the GPRegs and the FPRegs folders respectively. Figure 2-7 shows the GPR window, and Figure 2-8 on
page 11 shows the FPR window. As data changes in the simulated registers, the data in the windows is updated and
registers that have changed state are highlighted.

[mysim/PPEO:0:0: GPRs

MER 9000000000001032 64,Hv,ME, IR,DR,RI
CR 28000088 Sl

PC cO0000000018C8EC extsw r3i,r9

LE CO0000000018C8D0 CTE 0000000000000000 HER 0000000000000000
GPR 0 0000000000000070 5 00000000000000Z2E 16 cO0000000D363F00 24
1 C0000000004D3D20 % 0000000000000070 17 CO000000D00362ZAA8 23
Z CO0000000004CBZCE 10 0000000000000072 13 CO0D00DODOD3FD9ZE 26
3 CO000000003ER0Z20 11 0000000000004530 19 0000000000000000 27
4 cO0000000003ES040 12 0000000DZ24000024 20 0000000000000000 28
2 DooooooooonoooL10 13 CO00000000424D30 Z1 0000000000000010 29
6
T

CO0000000004AEBZ0 14 0000000000000000 22 C00D0DOOOD3BA000 30
oooooooooonooooon 15 4000000001000000 23 CcO000000D003E6030 3l

Figure 2-7. PFE GeneralPurpose Registers Window

mysim/PPE0Q:0:0: FPRs

FPR 0 -0.57751846 OxBFEZ7BOS00000000 11 8386607.5 0x415FFEDBEOOOOOOD 22 0 0x0000000000000000
i b 0xEFFO000000000000 12 -0.97075653 0xBFEF107000000000 23 0 0x0000000000000000
2k Ox3FFO000000000000 13 -0.3%323807 0=BFDS2AD000000000 24 0 0x0000000000000000
30 0x0000000000000000 14 0 0=0000000000000000 25 0 0x0000000000000000
410 0x0000000000000000 A 0z0000000000000000 26 0 0x0000000000000000
50 0x0000000000000000 16 0 0=0000000000000000 27 0 0x0000000000000000
60 0x0000000000000000 170 0x0000000000000000 28 0 0x0000000000000000
70 0x0000000000000000 16 0 0=0000000000000000 29 0 0x0000000000000000
g0 0x0000000000000000 ALERHD) 0x0000000000000000 00 0x0000000000000000
9 0.021 0x3F%5610620000000 200 0z0000000000000000 ila 0x0000000000000000
10 9.59999997E-06 Ox3EE4FBB580000000 20 0=0000000000000000

Figure 2-8. FFE Floatng-Foint kegisters Window

The PPC Address Translation window (PPC_Xlate) shows the contents of the main address translation structures for
the PPE, including the segment lookaside buffers (SLBs) and translation lookaside buffers (TLBs). Please refer to the
Cell Broaaband Engine Frogramming Handbook, Chapter 4 Virtual Storage Environment for information on the
contents of these structures.

SPE Components

The SPE folders (SFEO .. SFE/) each contain eleven elements. Four of the elements — SPUTrack, SPUCore,
SPUChannel, and SPUMemory — present windows that show data in the registers, channels, and memory of the SPU.
Two of the elements — MFC and MFC_XLate — present windows that show state information on the MFC. Two
elements — SPUStats and LS_Stats — display dialogs containing statistics on the operation of the SPU core and local
storage. The last three sub-items — Model, StackChecking, and Load-Exec — represent actions to perform on the SPE.

The SPU PC Tracker window is displayed when the user double-clicks on the SPUTrack folder icon for an SPE. An
example of this window is shown in Figure 2-9. This window operates in a similar manner to the PPE PC Tracker

The SystemSim Graphical User Interface I

window described above. The window displays the region of the SPU’s local storage containing the instructions that
are currently being executed by the SPU. Each line of the window shows the address of a word in storage and its
contents in hexadecimal, ASCII, and as a disassembled SPU instruction. The highlighted line in the window indicates
the current position of the program counter. The Step button at the bottom of the window can be used to advance
execution of the system until the SPU completes one instruction. Double-clicking on a line will toggle a breakpoint on
that line (indicated by the red B at the front of the line). Like the PPE PC Tracker window, this dialog will display the
contents of a register if the mouse is positioned over the register name in the disassembled instruction. In addition,
hovering over a channel name will display the channel count and channel value, as shown in Figure 2-9.

mysim/SPE7: PC Tracker

goooozco BOA0S109 : *x@*=x shufk $2,%2,52, 59 .

ooooozcd S58COB8582 @ Hx*x fm %2, 511,52

ooooozZcs : ED410103] fma %2,%2, 54,53

goooozZec @ 28820302 [*%* stgx 2, 56, 58

0o0o0o0ZDp0 @ 1c040306 xxkx @ ogi 86, 56,16

0o0o0o0zZpd 217FF885 l#%% : hrnz %5, .-60

000002D8 : 30937a02 Oxz* : lga %2,39388

oooooZpe @ 3F810102 Pxxx o potghvi $2,52,4

O0O00ZED : 21a00812 I#%% : yroh SMFC_LSA, 518

0000DZE4 18008602 krix :og B2 812 &2 —

D0DDOZES : 21A00902 & 1%% : wrch SMFG Ele,3MFC_LSA (ch16) - 3024 1 (value count] |

00000ZEC @ 21a00%8F : !#** : yrch SMFC Size, 515

O0000ZF0 : Z21A00&0E : !'#** : wrch $MFC TaglID, 514
(EMO0000ZF4 : 21200253 : !#%* : wrch SMFC _cmd, $19

00000ZFS : 30937a02 Oxz* : lga %2,393388

00000ZFC : 3FB20102 PEREE rotghyi $2,%2,8 —
StartAddr:|DX2CD ILength:l E4 Reload | Step | Close |

Flgure 2-9. SPU PC Tracker Winaow

Figure 2-10 shows the SPU Core Window, which displays the contents of all the registers of the SPU in a pair of
scrollable list boxes. Below each list box is a display that shows the contents of the selected register formatted as four
32-bit integers, four 32-bit single precision floats, and two 64-bit double precision floats. The window also displays the
current value of the SPU’s floating point status and control register (FPSCR) and status register.

mysim/SPE7: Core

REG19 0x00000020000000200000002000000020 [rEG112 |0%EE76CCDEFS0012C4FTFFFFDCFTFBECAD 4]

REG20 0x00008ED000008ED000005EDO00008EDD REG113 |0xF7FS8EDOOF7FDAFCA0000000100000000

REGZ1 0x00000040000000400000004000000040 REG114 |0x00000001F800087COF3E03FEFTFSECED

REG22 0x00000002000000020000000200000002 REG115 |0x017C10ECFE0011080000000100000000

REG23 0x00000041000000410000004100000041 REG116 |0x00000001F8001564072456TEFTFSECED

REG24 0x40400000FCCEFI58FCCEFIT600000000 REG117 |0x017c170CFB0011080000000100000000

REG25 0x41200000412000004120000041200000 REG118 |0x0000000100000000069CEL12000000000

REG26 0x00000000000000000000000000000000 REG119 |0x015E8098FE0016400000000000000000

REG27 0x00000000000000000000000000000000 _|lrEc120 |0x00000000220024822800442200000000

REG28 0x00000000000000000000000000000000 REG121 |0x100F3F58FCOTFECCFCOTFECE01801804

REG29 0x00000000000000000000000000000000 REG122 |0xF300000800000001F779000000000007

REG30 0x00000000000000000000000000000000 REG123 |0x017831500178315000300F0000023140

REG3L 0x00000000000000000000000000000000 REG124 |0x017c0000017C475CFTFFFFDCFA001108

REG32 0x00000000000000000000000000000000 REG125 |0xF7FS8ED30F7FDENSCOLTCIOECO1817528

REG33 0x00000000000000000000000000000000 REG126 |0x0000000001801500F7FFFFDCFTFSFOS0

REG34 0x00000000000000000000000000000000 /[REG127 |0x003DOFDOE7FEFACO0L TEAEBAFTFEFACO id

REG24 | 0x40400000FCCEF958FCCBFI7600000000 | REG124 | 0x017c0000017c475CFTFFFFDCFE001108 |

1077936128 [-53741224 [-53741194 i 24903680 24921948 [-134217764 | -134213368
3 -5.47275e+36)-8.47277e+36 i 4.628512-38 [4.533632-38 |-1.038462+34] -1.03%e+34
| 32 [-1.39581e+293 [1.83321e-301 -1.05657e+270

FPSCR | 0x00000000000000000000000000000001 |

Status| Oxl { running } { not stalled } |

Figure 2-10. SFU Core Window

Figure 2-11 shows the SPU Channels window, which displays the channel contents and channel count for each of
the SPU’s channels. As in the simulated registers, the data in this window is updated as the simulation proceeds and

© IBM Corporation. All rights reserved.

values that have changed state are highlighted. The BP button next to each channel opens a dialog for setting a
breakpoint on accesses to the channel, which can be conditional on the value read or written by the access.

.Y annels - Hx
1 6P | Do0ooooo [0] 0 Rean Event sStatus (RE) 1 BP | 00000000 [1] 16 DM Local Storage Address (W)

1 &P | oooooooo | [11] 1 white Event wask () 1 8P | Doooooo | [1] 17 DM Effestive address High ()
1 &P | ooaoopod | [1] 2 white Event sckrowledgment W) 1 8P | Doooon | [1] 15 DM Effertive Address Low (W)
5P [ooooooon | 1] 19 DM Transer Sizs ()

1 8P [ooooonon | [1] 20 DM Command Tag 1D (W)

-1 BP | 00000000 @ 3 Signal Notification 1 (RB) 1 BF | 0ooooooo [18] 21 DM Command Dpeade £ Class 1D (WE)
_1 &P | Doondooo [1] 4 signal Notification 2 (RE}

1 6P | Do0ooooo [1] 7 white Decramenter (w) 1 BP | 00000000 [1] 22 vhite Tag-Group Query Mask (#)
1 BF | Dooooooo [1] & oot Decrementer (R 1 BF | 0ooooooo [1] 23 white Tag Status Lipdate Recueat (WE)

1 BP | 0oooo0o0 [0] 24 Rean Tag-Grous Status (RE)

1 BP | Dooooooo [1] 3 white Mutisource Spne. Request (e | 1 BF | D000 [0] 25 Peant List Stalang-Motify Tay Status (RE)
_i BF | oooooooo m 11 Read Event Mask () _i BF | ooooooo m 26 Wite List Stall-and-Notify Tag Ack. (%)
1 BF | o0oooooo [1] 12 Read T Girows Guery hask (Fi) 1 BP | 0oooooo0 [0] 27 Read Atomic Cammand Status (R

_1 &P | Doondooo [1] 13 Rean Machine Status (R} _1 8P | Doooooon [1] 25 white Dutiound Wailaos: (WE)
aBp[= ~| 0] 28 Reart Inbound Mailbos (R

i BF | 00000000 [1] 30 Write Duthound Interrupt Mailces (48

1 &P [oooodooo [1] 14 wite State Save-anc-Restore ()
_i BF | 0ooooooo [1] 15 Reat State Save-anc-Restors (R) | Status | not staled

PoORQE BEE oI

Figure 2-1 1. SPU Channels Window

The SPU Memory Window displays the contents of a region in the SPU’s local memory. An example of this dialog
window is shown in Figure 2-12. The starting address and size of the region are specified in the fields at the bottom
of the dialog window. Memory contents can be displayed as hex and ASCII strings or as SPU instructions. The SPU
Memory Window also allows users to set breakpoints on read or write accesses to a region of SPU memory.

The SystemSim Graphical User Interface 13

mysim/SPE7: Local Store

00000000 : 40200000 24004080 Z4FFE0E1 L@ xxBrarisirxix

00000010 : 33001F00 3300D680 1cO80081 Drzdipnlut s slaary rsass

00000020 : 35000000 00000000 04000100 04C

0ooooo3o : 040002D2 40800000 43FFFB01 24C Enable kemory Access Breakpoints

00000040 : 24FF081 1CFE0081 24004080 424

00000050 : 08004183 3FE30104 7c000205 BOE W Read Access

00000060 : 32878004 S020c084 337FF380 42C _I Write Access

00000070 : 33005000 04002803 04002884 04C .

00000080 : 33001BO0 33005DE0 1000188a 30E Min Address: [0x00000000

00000090 : 24004080 24FFE081 1CFEO0081 3FE Max Address: [0x0000000F

000000&0 : 4020007F 4020007F 7E00010Z 56C

000000BO : 23000282 32000580 1c010102 20

000000cO : 35200180 3080F402 34000103 3BE e | GG | S |

000000D0 : 217FFDO3 40800082 3FEOCLOZ 20E

000000ED : 1cO080081 34004080 35000000 00%

000000F0 : 24004080 24FFE081 1CFE0081 1cCOoomor — <o

00000100 : 34004080 35000000 42000004 3080F00Z : A*@*GA%+Bxxx(x%+

00000110 : 24004080 2AFFE081 1CFS0081 3FS0010Z : $*@A5A4xAxxx7x%%

00000120 : 20000202 4203c003 20000104 35200200 : #*#BA%% x%x5 %

00000130 : 1cO080081 34004080 35000000 00200000 : *#**#d#@x5xxxx *+

00000140 : 24004080 2AFFE081 1CFEO0081 1COBO08L : $*@*S#tstxxrrsss

00000150 : 34004080 35000000 40FFFFE2 Z1A00BOZ : A*@*GA%x@xxxlxxx

00000160 : 424DES03 21A00803 3FEL0204 Z1A000904 : BMA# | £447xx%1%x%%

00000170 : 40801802 21A00982 40500003 Z1A00AODT : @*## | A4x@xxxlxxs

00000180 : 40802002 21A00282 40800103 Z1A00BE3 : @*% *lA#x@xxxlxxx

00000150 : 01200C02 30937E03 42510182 32800015 : ##*#04-%Bxxx2x%*

00000120 : 41209019 B160C18Z 4205EB0A 30937203 : A ##+ #+Bxxx(#z*

000001B0 : 4225ES08 32800000 4245ES0Z SFEDDSLZ : B%**2A4+BEA#74%%

000001cO : 04000411 3280000E 04000114 A0S200L0 : *A**2Ax£xxx@r%+

00000100 : 4cO00183 40802097 40802015 A0S00116 : LA**@% *@% *@x%+

000001ED : 40801013 20002203 OF61068C 30937A02 : @*#x% #+xtaxx#z+

000001F0 : 30937203 DS008686 3FE10183 AB040302 : Drzr#447xxxHr%* w
Start Addr |DXDDDDDDDD Length: |512 o Hex

I View As Instructions Breakpoints... | Reload | Close |

Figure 2-12. SPU Mermory Window

Figure 2-13 shows the MFC window, which provides internal MFC state information. Figure 2-14 on page 15 shows
the MFC_XLate window, which provides translation structure state information.

© [BM Corporation. Al ights reserved.

mysim/SPE7: MFC

B
Status | active
SPE DA Queue

REMT-Class DM& List DM
L3a E& dize Tag ID Cmdl Len I
0z00004000 (OxDOOODODOO0OOOB4000 16384 0=00 0 0=xzd it ra
000000280 OxDO0OOOOOCOOOOA0000 2304 0O=x00 0
0x00000000 O=x0000000C0C000000 0 0=x00 0

0x20 0
Oxcec 0

.l I -
Proxy DhA Queue

List
Len IC

EMT-Class
Tag ID

DMa

LEa E& Size Cmd

Interrupt State
ICLASS0 : mask=0x0000000000000000 status=0x0000000000000000 visible=0x0000000000000000
ICLASST : mask=0x0000000000000003 status=0x0000000000000000 visible=0x0000000000000000
ICLASZSE : mask=0x0000000000000000 status=0x0000000000000000 visible=0x0000000000000000
CER : 0x0000000000000000 CTFR ; 0x0000000000000000

ACCR : 0x00000000

DiA_Control : 0x0000000003004000
Figure 2-13. SFE MFC Window

mysim/SPE7: Address transiation

EZPE7 MFC Address Translation
5LBs 1 Walid Only

V81D ESID Ks KEp N L ¢ ¥ 1Lg |
0 0x0000408F92094000 0xc00000000DOCOOOOOD O 1 0O 1 O 1 O |
1 0x0000FO%BBSAF5000 0xDOOOOODODODOCOOOOOD O 1 0O O O 1 O J

2 0xz00000000O00OOOO0O OxOOOOODOOOOOODOOO O O O O O O 0

3 0Ox00000000000O00OCO OxOOOOOODOOOOOQCDOOO O O 0O O O O 0
4 0=z0000000000000000 OxODOOOOODOOOOOCDOOO O O 0O O O O 0 7]

TLBs 1 walid Only
PTE upper PTE_lower lpid |
0 v 0z0000408F92C%4015 0x0000000000000190 0x00000000 i
1 v 0x0000FO9EBE85AF5001 0Ox00000000084801594 0x00000000 i
2 0z0000000000000000 O=x000000O0COOOOOOOO DxO0C0O0OODOO0
5 0z0000000000000000 Ox00O000O0OOOOOOOOOO DOx0000O0000
4 v 0x0000FD9BB8%AF5001 0x000000000B84811%4 0x00000000 4
Translation Registers |
DAR : 0x0000000000000000 RivILR : 0x0000000000000000
DSISR @ 0x0000000000000000 RKCR : 0x0000000000000000
SDR : 0x000000000F 800004

Close |

Flgure 2-14. SFE MFC Aadress Transiation Window

The next two SPE elements display statistics about the SPU core and local storage. Double-clicking on the SPUStats
element will display the SPU Statistics window as shown in Figure 2-15. These statistics are only collected when the

Model for the SPE is set to ppeline

The SystemSim Graphical User Interface

15

mysim/SPE7: Statistics

gPU DD3.0
L
Total Cycle count 478434
Total Instruction count 133550
Total CPI SR
L
Performance Cycle count 378304
Performance Instruction count 131456 (131264)
Performance CPI 2.88 (2.88)
Branch instructicns 16354
Branch taken 16320
Branch ncot taken 64
Hint instructicns 64
FPipeline flushes 6d
8P operaticns (MADDs=2) 0
DF operations (MaDDs=2) 65536
Contention at L8 between Load/Store and Prefetch 16364
Single cycle 98368 (Z6.0%)
Dual ayole 16448 (4.3%)
|Hop cycle 0 (0.0%)
Stall due to branch miss 1152 (0.3%)
8tall due to prefetch miss 0o (0.0%)
Btall due to dependency 163904 (43.3%)
8tall due to fp resource conflict 0o { 0.0%)
Btall due to waiting for hint target 128 (0.0%)
Issue stalls due to pipe hazards 98304 (26.0%))
Channel stall cycle 0 (0.0%)
8PU Initialization cycle 0o { 0.0%)
Total cycle 3768304 (100.0%)
8tall cycles due to dependency on each instructicon class
FH2 64 (0.0% of all dependency stalls)
SHUF 0 ¢{ 0.0% of all dependency stalls)
F¥3] 0.0% of all dependenay stalls)
LS 65536 (40.0% of all dependency stalls)
BR 0 (0.0% of all dependency stalls)
SPR 0 { 0.0% of all dependency stalls)
LNOP 0 (0.0% of all dependency stalls)
NOP 0 ¢ 0.0% of all dependency stalls)
FHE 0 ¢ 0.0% of all dependency stalls)
FEG 0 ¢ 0.0% of all dependency stalls)
FBT 0 ¢ 0.0% of all dependency stalls)
FED 98304 (60.0% of all dependency stalls)
The number of used registers are 8, the used ratic is 6.25
Instruction Class Insts Issued Insts Exec Exzec Cycles Cycles/Inst
FHZ (EVEN): Logical and integer arithmetic 45344 49344 82304 1)
SHUF (CDD): shuffle, quad rotatesshift, mask 0.00
FX3 (EVEN): Element rotate/shift]]] 0.00
LS (ODD) : Load/store, hint 49152 49216 1639685 geegig
BR (ODD) : Branch 16364 163404 65536 4.00
SPE (0DD): Channel and SPR mowves 192] 540 0.00
LNOP (ODD): NOP ad 128 0 0.00
NOP (EVEN): NOP i] i] i] 0.00
FXE (EVEN): Special bvte ops 0 0 0 0.00
FP6 (EVEN): BP floating point 0 0 0 0.00
FP7 (EVEN): Integer mult, float conversion u]] o.o0o0
FPD (EVEN): DP flocating point 16384 16384 114688 7.00
dumped pipeline stats

Figure 2-15. SPU Statistics

Figure 2-16 shows the LS_Stats window, which brings up the new local store display map. This dialog presents
accesses to the SPEs local storage in a graphical manner, where access types are color-coded as shown in the legend
and displayed for a range of addresses in the local store arranged across the x-axis of the plot. A trace of the accesses
shown in the plot is also displayed in text form in the list boxes on the lower part of the window.

© [BM Corporation. Al ights reserved.

mysim/SPE7: Local Store Stats

CBE!0 SPE:Y Local Store -
|
2000
B LOAD
B W STORE
=,
1000 B DMA_IN
DA _OUT
a
HAKIS 7]
[]
W Graph_FETCH W Graph_LOAD W Graph_STORE W Graph_Dikis_ [N W Graph_Dbha_OUT
I Use Logarithmic Scale for Y-Axis
Graph Data Point Details: Helpful Hints:
H-Axis spans the entire SPU local store address rangs
Graph Details:
1) The detail secticns below the graph contain more details of a single data poi
nt in the graph
2) The yellow line on the graph highlights the single data point that is being s
tudied
3) Hold dowm shift key while moving mouse over the graph (near the z-axis) to mo
SPU Local Store Contents: e T
Zooming In/oOut:
1) Click (mousse-butteon-1) on graph, drag, and release to zoom in on a regicon on
the graph
2) Right-Clieck {(mouse-button-3) con graph to zoom back ocut
Start Addr: [0 I Length: [128

Figure 2-16. SFE Local Store Statistics Window

The last three items in an SPE folder represent actions to perform, with respect to the associated SPE. The first of these
action elements is labelled either Moael: instruction, Moael: pjpelne, or Model: Fast. The label indicates whether the
simulation for this SPU Is in /nstruction mode, for checking and debugging the functionality of a program, or pjpéline
mode, for collecting performance statistics on the program, or /ast /mocde for quickly advancing the execution of a
program to a region of interest. The mode can be toggled by double-clicking the item. The SPU Modes button in the
button array of the main GUI window can also be used as a more efficient way to set the modes of all of the SPEs
simultaneously.

The next item s labelled StackChecking:off or StackChecking:.on. Double-clicking on this item will enable or disable
special checks for application stack overflow. This feature checks the “available space” element of the stack pointer
register (R1), as defined in the SPU Application Binary Interface specification, to detect stack overflow. The check is
performed on every write access to local storage and thus can significantly impact simulation performance.

The last item in the SPE folder, Load-Exec, is used for loading an executable onto an SPE to be executed in standalone
mode. When you double-click the item, a file-browsing window is displayed, allowing you to find and select the
executable file to load.

Simulator and BE Components

There are additional simulator- and BE-specific components that are available from these levels in the simulation
panel. These features include:

m Atthe BE level, the Load-EIFApp and Load-Ei-Kernelfolders are available for loading an ELF binary or ELF kernel
for execution on the BE. Double-clicking these items opens a file-browsing window from which you can find
and select an application or kernel file to load.

m At the simulator level, the Memorny/Map and SystermMermory components display information about system
memory. The MemoryMap window displays the name of each region with the corresponding start and end
memory addresses for each region. The SystermMermor, window displays a region of memory, specified using

The SystemSim Graphical User Interface 17

either a physical or effective address. Memory can be displayed as data in hex and ASCII strings or as PowerPC
instructions. SysternMemory also allows users to set breakpoints on read or write accesses to a region of
memory. Figure 2-17 and Figure 2-18 illustrate sample windows for MemoryMap and SystemMemory.

b4 mysim: Memory Map = -
fernary Magp
Regions
HALE START END |
mpsin: 0 MEHORT Ox0000000000000000 0x000000000FFFFFFF Al
mpsin:1:MEMORT Ox0000000010000000 0x000000001FFFFFFF
moW Ox00000000F0000000 0x00000000F000007F
mpsin: 0 SPr AREA Ox0000020000000000 0x000002000040FFFF
mpsin: 0 PRI AREA Ox0000020000500000 0x0000020000507FFF
mpsim: 00 TTE Ox0000020000502000 0x0000020000502FFF
mpsin: 0 Pem Ox000002Z0000509000 0x0000020000509FFF
mpsin: 0 BESAM Ox000002000050A000 0x000002000050AFFF
mpsim: 0 Tock Ox0000020000510000 0x0000020000510FFF
mpsim: DETE Ox0000020000511000 0x00000200005117FF
mpsim: D EEE Ox0000020000511200 0x0000020000511EFF
mpsim:0:Ioc 0x0000020000511c00 0x0000020000511FFF i

Figure 2-17. Memorny/Map Winaow

OOO000000000006: ¢ O00000000000006c @ PcP21E72 @ [%%% @ mr. 24, 'l

OOO0000000000070 ¢ O000000000000070 : FEOOOOLN @ ®%=& ; ofd 24, 160y

OOO0000000000074 « O000000000000074 ¢ PeO004AC @ [FFF @ spne

OOO000000000007% ¢« O00000000000007% : EZ200008 ; === ;1] o, By

OOO000000000007: ¢ O00000000000007¢ ¢ 2c240001 @, 5%% ¢ empdi o0, o4, 1

OOO0000000000020 ¢ O000000000000020 : 4022FFFE @ @ FF : hne crl, $-0x2

0000000000000084 : 0000000000000084 ; SE80C000 @ <**% ; addis o4, 0, -16584

QO0000000000008% 00000000000000%8 @ 0840000 @ “FFF ¢ ari o, o, 0 J

QOOao0ooao00n0gc ¢ 00000000000000%c ¢+ TE8407ce @ x®FF 1 cldicr o4, o4, 32,0,31
{xFFFFFFFFO0000000)

QOOaO000a0000030 ¢ 0O000000000000030 ¢ &4840000 @ 4%FF 1 oris o4, 0, 0

QO00000000000034 1 00000000000000%4 ¢ EO845000 @ TFFF ¢ oari o, o4, 0xd000

QO0ao000a0000038 ¢ O00O0000000000038 ¢ 7c8303A6 @ |FFF 1 mbchkr ctr,

ao0oaooooao0onasc ¢ 000000000000003c ¢ TFOZCETE @ FFFx @ mr, o3, r2d r
Start Addr:leDDDDDDDDDDDDDDDD Length: I 256 1 Hex Fieload |

ﬂl Use Address Translation Processor: IPPED:D Chahge... | W wiew Az Instructions

Figure 2-18. SystermMemory Winaow

Breakpoints... | EloseJ“

GUI Buttons

On the right side of the GUI screen (Figure 2-1 on page 8] are five rows of buttons. These are used to manipulate the

simulation process. The buttons do the following:

m Advance Gscle—Advances the simulation by a set number of cycles. The default value is 1 cycle, but it can be
changed by entering an integer value in the textbox above the buttons, or by moving the slider next to the
textbox. The drop-down menu at the top of the GUI allows the user to select the time domain for cycle stepping.
The time units to use for cycles are expressed in terms of various system components. The simulation must be
stopped for this button to work; if the simulation is not stopped, the button is inactive.

m Go-Starts or continues the simulation. In the SDK's simulator, the first time the Go button is clicked it initiates the
Linux boot process. (In general, the action of the Go button is determined by the startup /c/file located in the
directory from which the simulator is started.)

m Siop—Pauses the simulation.

m Service GDB—Allows the external gdb debugger to attach to the running program. This button is also inactive
while the simulation is running.

m Jriggers/Breakpoints—Displays a window showing the current triggers and breakpoints.

m Upaate GUI-Refreshes all of the GUI screens. By default, the GUI screens are updated automatically every four

seconds. Click this button to force an update.

© [BM Corporation. Al ights reserved.

Debug Controls—Displays a window of the available debug controls and allows you to select which ones
should be active.

Options—Displays a window containing a Display tab from which you can set fonts for the GUI display, and a
Simulator tab from which you can set the gdb debugger port.

Emitters—Displays a window with the defined emitters, with separate tabs for writers and readers.

Mode—Displays a window containing a message indicating the current simulation mode and three buttons
which will change the simulation mode to fast, simple, or cycle mode. Figure 2-19 shows an example of this
dialog window. This dialog provides a convenient way to set the simulation mode for components of the system
in a consistent manner. The simulation mode can also be selected with the “mysim mode” command and
displayed with the "mysim display mode” command.

SPU Modes—Provides a convenient means to set each SPU's simulation mode to instruction mode, pipeline
(cycle accurate) mode or fast mode. The same capabilities are available using the Model toggle menu sub-item
under each SPE in the tree menu at the left of the main control panel. Figure 2-20 shows the SPU Modes
window.

SPE Visualizatior—Plots histograms of SPU and DMA event counts. The counts are sampled at user defined
intervals, and are continuously displayed. Two modes of display are provided: a “scroll” view, which tracks only
the most recent time segment, and a “compress” view, which accumulates samples to provide an overview of
the event counts during the time elapsed. Users can view collected data in either detail or summary panels. The
detailed, single-SPE panel tracks SPU pipeline phenomena (such as stalls, instructions executed by type, and issue
events), and DMA transaction counts by type (gets, puts, atomics, and so forth). The summary panel tracks all
eight SPEs for the Cell Broadband Engine, with each plot showing a subset of the detailed event count data
available. Figure 2-21 on page 20 shows the SPE Visualization window.

Track All PCs—Provides a limited version of the PC tracker that shows the current execution location of all SPUS
and PPUs for each MCM in the system. If SMP mode is enabled, the Track All PCs window displays SPU and PPU
state for both MCMs. Figure 2-22 shows the Track All PCs window.

Event Log—Enables a set of pre-defines triggers to start collecting the log information. The window provides a
set of buttons that can be used to set the marker cycle to a point the the process.

FExi—EXxits the simulator and closes the GUI window.

Simulator is in mode SIMPLE

Fast hode Simple hode Cyecle Mode

Figure 2-19. Simuiation Mode Window

The SystemsSim Graphical User Interface 19

BE:0

SPUD: 4 Pipe - Instruction - Fast
SPU1: @ Pipe - Instruction ~ Fast
SPUZ: 4 Pipe - Instruction - Fast
5PU3: 4 Pipe - Instruction . Fast
5PU4: 4 Pipe - Instruction « Fast
3PUS: 4 Pipe - Instruction - Fast
5PUG: 4 Pipe - Instruction - Fast
SPU7: 4 Pipe - Instruction « Fast
AllBE:D Pipe Instruction | Fast |

Refresh |

Figure 2-20. SPU Modes Windows

Summary ‘0 Run ~ Stop |0 Scroll - Compress
cee[0 sPeEfs | Time Delta[10000

Cycle 554125875957.0 (cpni—, mode:pipe, count:on)
PC [addr=1haO, inst=e1e1dssf]->ma $1554357$15'
Fetch 0:[addr=1bd8, inst=e1ed4e0f-=fma $15$28 $53$15"

1:[addr=1bdc, in: 448917al->'shufb $34,$34$34%122'
(LT 0:[: >'stop '
T O T R] Y R R e R e FECE T O Ry e O T 1:[addr=1bc4, inst=3400c03al-='lgd $i25,48($1)’
554.125 554.1252 554,254 L 554.1256 554.1258 Exec Ofaddr- 1698 Inst-e0811305)s ma $4 833, 5455
= Sfop W Diop W inst W Cycle 1:[addr=1b9¢, inst=3430be0z}->'Igd $2,3104(5124)'

Exec

0

e e e T e e e
554 1254 5541256 554,125 554 1252 554.1254 554 1256 554 1258
G-Cyeles G-Cycles

W Get W Put W SLB W TLB M AGet 7 APut W NOP o LNGP LS W BR

T
554.125

Fetch Exec Int

= e e = e T T e e e
554.125 554.1252 554.1254 554.1256 554.1258 554.125 554.1252 554.1254 554.1256 554.1258

G-Cyeles G-Cycles
W Misp W Hint W Pref W Flush [T Chan W Fxz W Fx3 W FxB m SHUF
Issue Exec Float
8000
6000
4000
2000
0
T e e e e e P e e P e e
554.125 5541252 554.1254 554.1256 554.1258 554.125 5541252 554.1254 554.1256 554,258
G-Cycles G-Cycles
W ssu W Dpnd I DBk W 5Blk Ll T 58I W FP6 W FP7 W FPD

Figure 2-21. SPE Visualhzaton Window

20 © [BM Corporation. Al ights reserved.

b4 mysim: Track All P

MCH: 0 CFU: 0:0 STATE: om Iy
cO00aaaa00a4 7000 0x0000000000047000 ¢+ 4130007c @ A**| : bgt cr'?, §+ix?c
COO0O00000047004 ¢ 0x0000000000047D04 : E93E801% : #:¥% ; 1d 9, -32744 {30
c00000000N04700C ¢ 0x000000000004700C ¢ 7COS0ZAA ¢ [*5% : lwax i, €3, r0
cO00aaaaa0d47oio 0x0000000000047010 ¢+ Tcoddmdd @ |*0F @ add i, €d, 3
MCH: 0 CFU: 0:1 STATE: stalled
cO0000000002E114 @ OxO000000000003E114 @ 7200BE7A4 @ x¥¥% 1 rcldicr o0,x0,22,0,62 {0xFFFFFFFFFFFFFFFE}
cO00dda0andseiis 0x000000000003811% ¢+ 7cl1823A6 @ |[*4#F : mispr ctrl wo, o
cO0000000003E11c @ O0x000000000003511¢ @ 38210090 : 81%% : addi rl, rl1, 0xA90
cO0000000003E120 ¢ 0x000000000003E120 @ ES010010 @ #+%% 1 14 o, 16 {xl}
cO00O0000003E124 @ 0x000000000003E124 : EBERIFFES @ #¥%% 1 1d 23, -24{cl)

v

Fieloac | ﬂIJ

Figure 2-22. Track All PCs Window

The SystemSim Graphical User Interface 21

22

© [BM Corporation. Al ights reserved.

CHAPTER 3

SystemSim Command Syntax and Usage

This chapter describes the IBM Full-System Simulator command framework, and introduces
the structure, format, and usage of simulator commands. Topics in this chapter include:

s Unaerstanding and Using Simuiator Commands
s Defining and Managing a Simuiated Machine

s Summary of Top-Level Simulator Commands

@ International Business Machines Corporation. Al rights reserved. 23

Understanding and Using Simulator Commands

The IBM Full-System Simulator provides a unified, cross-platform application programming interface that enables
users to easily set up the simulation environment, manage simulated architecture components, and write debugging
and performance analysis routines. The IBM Full-System Simulator has harnessed the power of Tcl/Tk to develop a
simple and programmable text-oriented syntax that is easily extended and minimizes the need for proprietary and
difficult programming grammar and usage. By extending Tcl with exported functions, data types, and numerous
predefined interfaces that are used for all interobject communication, the simulator provides a rapid, cross-platform
development environment that enables users to quickly start working in the simulation environment.

The IBM Full-System Simulator command framework provides an extensive set of commands for modeling,
simulating, and tuning microprocessor components in a system. Each component in a microprocessor system is
configured via commands that not only define the component’s run-time behavior and characteristics, but govern its
relationships and interactions with surrounding components in the system. The SystemSim Command Keference
provides syntax and usage information for Tcl/Tk commands that are used in the simulator environment.

Commands in the IBM Full-System Simulator are organized into a hierarchy of operations based on the command
function. At the top level, commands perform general sets of operations in the simulation environment, such as
defining and displaying machine properties and system configurations, modifying configurable parameters,
performing 64-bit arithmetic operations that are not provided by default in Tcl, or managing the simulation
environment and its data collection and analysis tools.

In addition to configuring system components, the simulator commands can be combined with programming logic
and Tcl programming constructs to gather, analyze, and visualize simulation events, run workloads on the modeled
microarchitecture, and generate performance metrics with new or revised configurations to forecast performance at
future workloads. The command line interface also can be used to perform a number of operations on the simulator
itself, such as to control a simulation, start data collection and visualization tools, and define and load virtual devices
and disk images.

24

© IBM Corporation. All rights reserved.

Figure 3-1 illustrates how commands are processed in the simulation environment and describes the different
categories of commands that are available:

pure Tcl or simulator Tcl syntax; the interpreter executes Tcl operations environment, or to define and modify simulator elements

Interpreter reads command line input and confirms if command is Simulator Commands: commands to manage the simulation
and passes simulator-specific commands to the simulation framework (

IBM Full-System Simulator

Tcl Interpreter Simulated Machine Simulator tools
| [Arimerc
sysrtensim % [[|| it

Command Line Input

Simulator Tools Commands:
commands to set up and use the
Component Configuration Commands: simulator’s data collection and
commands to display or modify configurations of a analysis utilities

machine or configuration object in the simulation

64-bit Arithmetic Commands: commands to perform
64-bit arithmetic (not supported by default in Tcl)

Figure 3-1. Categories of Simuiator Commancds

Once the simulator is started, commands may be entered at the simulator command line or via simulation Tcl scripts.
Figure 3-2 illustrates the simulator command line at start-up and the simulated Linux console that is launched from
the simulator command line with the mysim go command:

hd Systemsim_user® mymach
File Edit View Terminal Go Help
> systemsim -cell

[2]

THIS CELL BROADBEAND ENGINE SYSTEM SIMULATOR, TOGETHER WITH ALL PERFORMANCE
DATA RESULTING THEREFROM, IS5 PROVIDED BY IBM AND RECEIVED BY YOU ON AN "AS-IS"
BASIS, WITHOUT WARRANTY OF ANY KIND. SEE THE APPLICAELE LICENSE FOR ADDITIONAL
TERMS AND CONDITIONS.

Licensed Materials - Property of IEM.
(C) Copyright IBEM Corporation 2001, 2006
All Rights Reserved.

WARNING: 0: **unused®* m:
WARNING: O: #**unused** = B%]
WARNING: 0: #**unused** ooking for displays
WARNING: 0: ##*unused#* F stdout is 1 Fopus

o pening displays, ..
WARNING: 0: **unused** nztantiating rtas at OuOOOOOOOOOFFFSN00, ., done

simulator command | WARNING: 0: **unused** 0000000000000 ¢ baoting cpu /cpus/PowerPCREG
line prompt WARNING: 0: #**unused** Calling quiesce ..,

WARNING: 0: #**ynused** returning from prom_init
WARNING: O: #*unused#* firmuare_features = (xd

- Starting Li PPCE4 26,7
WARNING: 0: #**unused** arting inux
WARNING: O: #**unused** haca = (0000000004000
WARNING: 0: #**unused#* naca— pftSize = 0x16
WARNING: 0: **unuseds* naca-rdebug_switch = ()

oo naca—rinterrupt_controller = (xl
WARNING: 0: **unused** systencfg = Oxc00O00000005A00
WARNING: 0: **unused** systencfg—rprocessorCount = 0l
building tree.... zystemcfg->physicalbemorySize = (000000
clearing existing Openfi Sgstemch—ﬁCacheLlL?neS?ze = (80

Fy systemcfg-riCachelllineSize = OxB0 . o
done building tree. hiab_data, htab = Oxconoo0000Fz0bdRX command line in
LOAD : Opening ELF imag htab_data,num_ptegs = (E000 simulated system
E1f text start address
LOAD : ELF startup: PC=q, [cFO00L00

. L M Init 1 _|

LOAD : gpr [

Flgure 3-2 IBM FullkSystern Simuiator Command Line

SysternSim Command Syniax and Usage ‘ 25

Defining and Managing a Simulated Machine

Each version of the IBM Full-System Simulator delivers a set of default configurations for the type of PowerPC
processor it is modeling. Using these configurations, users can instantiate a simulated machine based on a default
configuration object to examine functionality and performance of a baseline system. Alternatively, users can create a
configuration object of the pre-defined machine, replace one or more default settings, and instantiate a custom
machine to evaluate how an individual component or the entire processor architecture performs under customized
conditions.

Figure 3-3 describes the general sequence of commands that are used to define a machine in the simulation

environment:
IBM Full-System Simulator
cpi=1 Simulated Machine Sirulisicr ek
[T | Avithmetic
I | || [| e
Reconfigured parameter of a : _ _ :
modifiable property Simulated machine in simulation environment
— |III ::III —— 1 F———
memurww I || |
|| [[[[
Configuration object Modlf ed parameters in Instantiated machine Disk images loaded in

configuration object simulation environment

1. Create a configuration object for a machine type: the define config command is used to define a new machine type for which an empty
configuration template is created, or the define dup is used to duplicate an existing configuration based on pre-defined settings.

2. Modiify configurable settings for the configuration object: the [configuration_name} config command is used to customize the default machine
configuration by modifying mutable configuration properties.

3. Instantiate a machine based on the configuration object: the define machine [machine_name} command is used to create an instance of the
machine type. At this point, most machine properties are fixed— although a subset of properties can be changed for the simulated machine (see Step 6
below).

4. Load the Linux kernel and rootdisk image used by the simulated machine: the [machine_narmel load and [machine_rame} bogus commands
are used to load disk images. Booting an operating system enables the execution of typical application programs that utilize standard operating system
functionality. The Linux operating system (running in the simulated environment) loads the application and is responsible for all operating system calls.

5. Start the simulation: the [machine_name] go command launches the simulator console window, which displays output of the simulated machine
and allows users to configure and interact with the simulation.

6. Reconfigure a modifiable machine parameter: the [machine_name] set command is used to change values of machine properties that can be
modified. When the simulation is started, the revised value is used in the simulation.

Figure 3-3. Defining, Creating, and Starting a Simuiated Machine

Commands to configure and initialize a simulated machine are typically provided to the simulator with a Tcl
configuration and start-up file called an initial run script that is loaded when the simulator starts. The initial run script
specifies commands to create a machine configuration and machine instance using this configuration, locate and
load the operating system and file system image files, and prepare the machine to begin execution. The name of the
initial run script can be passed to systemsim with the - option. If there is no initial run script specified when the
simulator is started, the simulator will use either a user-defined initial run script, which by convention is named
Systemsim.tcl and resides in the current directory, or the default initial run script lib/cell/systemsim.tcl provided with
the systemsim-cell release.

26 Delining and Managing a Simulated Machine © IBM Corporation. All rights reserved.

A typical initial run script

The specific commands in an initial run script vary slightly for various machine configurations, but all follow the basic

procedure described above. The following describes a command sequence that may be found in a typical initial run

script.

.

Create a configuration object called myconf and initialize it with the configuration named cell. The cell
configuration is a fixed configuration provided in the IBM Full-System Simulator as a baseline Cell BEA machine
configuration:

define dup cell myconf

At this point, other configuration settings can be specified or changed. An example of a configuration change
that can be made here is to specify that the configuration should employ two Cell Broadband Engine
processors, referred to as an SMP or Dual BE configuration. Since this requires changes to a number of
configuration parameters, a special procedure, config_dual_be, has been provided to specify an SMP
configuration. This procedure takes as a parameter the name of the configuration to be modified, for example:

config_dual _be nyconf

Create a simulator named mysim for a machine with the configuration myconf:

define machi ne nyconf mnysim

Load the operating system kernel into memory:

mysimload vm inux <path_to_vminux_file> 0x1000000

In hardware this would generally be performed by the system firmware, but the simulator is typically configured
without firmware installed and thus a simulator command is used to load the kernel into memory. In many
cases, the initial run script uses a standard search order to locate the vmlinux file, starting with the current
directory and then the images directory under the simulator root directory. The 0x1000000 parameter in this
command specifies the address at which to load the kernel file.

Specify a file containing the root filesystem (sysroot) image:

nmysi m bogus disk init O <path_to_sysroot_disk_file> newcow <cowfil e> 1024

As with the kernel image, the initial run script typically uses a standard search order to locate the sysroot_disk file
starting with the current directory. The newcow parameter indicates that the disk image should be accessed
copy-on-write, with changes stored in <cowf i | e>. This method treats the contents of the sysr oot _di sk file
as read-only, so that subsequent simulations can be performed with repeatable results. Specifying an access type
of r w (for read-write) instead of newcow indicates that modifications to the root filesysterm during the simulation
should be stored back into the sysr oot _di sk file. When the sysr oot _di sk is accessed read-write, the user
should issue the sync command before exiting the simulator to ensure consistency of the filesystem image.

Start the simulation with the mysim go command:
mysi m go
This will start the boot of the Linux operating system.

Once the operating system has completed boot, you can execute applications that run on the PPE, SPU, or both,
by entering commands at the Linux console. To automate console input, use the mysim console create
command. This command automates the interactions that are typically performed by manually typing
commands in the simulator console window:

mysi m consol e create input in string <consol e_i nput >

SysternSim Command Syniax and Usage 27

where console_input specifies a string containing console commands to execute. The string contents are

identical to any commands that are typed in the console window, including new lines (which can be entered

with the escape sequence \n|. Typically, the last command of the console input is callthru exit to return control

to the simulation Tcl command script.

Summary of Top-Level Simulator Commands

Table 3-1 summarizes functionality of selected top-level commands that are used to define, modify, and use the

simulator. The IBM Full-System Simulator Command Reference provides the complete command line syntax and

usage of each command or class of commands.

Table 3-1. IBM Full-System Simulator Top-Level Commands

alias

Assigns a user-specified personal shorthand for a command string. The alias
command allows users to call a small, more familiar command or name to execute
long or complex command strings.

define

Defines settings for a configuration object. The define command also provides
that ability to duplicate configurations from a pre-defined machine type,
instantiate a machine based on a configuration object, and enumerate a list of
machines that are active in the simulation.

display

Displays system-wide information about configurations, machines, instruction
settings, and warning levels. The display command is especially useful to
determine properties that are configured for machines that are currently available
in a simulation.

ereader

Controls emitter readers that are used in a simulation for performance data collec-
tion and measurement.

help or helprecursive

Displays a listing the IBM Full-System Simulator commands. The helprecursive
command displays a comprehensive command tree that hierarchically lists syntax
and input parameters for all available commands.

modify Modifies configurable simulation settings or parameters. The modify command is
useful for changing various run-time paramters, such as the warning level that is
set for the simulation environment.

object Provides the ability to interrogate information from one or more executable files to
examine low-level execution details.

quit Ends the current simulation and exits to the operating system command line.

simdebug Provides low-level tracing capabilities that are useful for debugging functionality or
performance issues in the simulated system.

simemit Specifies event types to be written to the shared memory buffer that is recording
emitted data.

simstop Stops the simulation and waits for instruction at the simulator command line. The
simstop command performs the same operation as typing CTRL+C to interrupt the
simulation.

Vversion Displays the version number of simulation systerm components, the date and

timestamp of the installed IBM Full-System Simulator build, and compile-time flags
that are enabled in the build.

28

Surnmary of Top-Level Simulator Commands

© IBM Corporation. All rights reserved.

Table 3-1. IBM Full-System Simulator Top-Level Commands

64-bit arithmetic operations By default, arithmetic operations in the Tcl scripting language do not support 64-
bit arithmetic. The IBM Full-System Simulator provides the following operations to
perform general calculations on 64-bit numbers:

= addé4 ® incré4 m orb4

= and64 = invert64 m percent64

m comparebt4 m |essthan_u64 = rshift64

u dive4 = [shift64 = subé64

m format64 = mul64 = yint32_to_float

At any time, users can type the help command at the command line to retrieve a list of command choices that are
available from that point in the syntax statement. In most cases, you can also just type a partial command sequence
and hit return. For example, at the top level, help displays a of top-level commands. An arrow indicates that a
subsequent level of command functionality is available for this command.

SysternSim Command Syniax and Usage 29

30 Surnmary of Top-Level Simulator Commands © [BM Corporation. Al ights reserved.

CHAPTER 4

Debugging Features in
SystemSim

The simulator has a vast array of debug facilities. This chapter describes some of the

debugging features that are specifically designed for SPU debugging. Topics in this chapter
include

s Detecting SPU Stack Overflow
s Buserrors caused by DMA errors

s Kernel aebugging

@ International Business Machines Corporation. Al rights reserved. 31

Detecting SPU Stack Overflow

The SPU Local Store has no memory protection, and memory access wraps from the end of Local Store back to the
beginning. An SPU program is free to write anywhere in Local Store including its own instruction space. A common
problem in SPU programming is the corruption of the SPU program text or dynamically allocated data when the
program’s stack area overflows into the heap or program area. This problem typically does not become apparent
until some later point in the program execution. If the overflow corrupted the program text, this typically results in an
illegal instruction exception when the program attempts to execute code in area that was corrupted. For corruption
of heap storage, the program might generate incorrect results or fail is some other manner. Even with a debugger it
can be difficult to track down this type of problem because the cause and effect can occur far apart in the program
execution. Adding printf's just moves the failure point around.

The simulator has a feature that checks for a stack overflow condition during the execution of an SPU program. This
feature checks the "available space” element of the stack pointer register (R1), as defined in the SPU Application Binary
Interface specification, for a negative value, which indicates stack overflow. The check is performed on every write
access to local storage and thus can significantly impact simulation performance.

Two methods are available to enable SPU stack checking. The first method is accessed through the SPE folder in the
tree view of the Graphical User Interface. Each SPE folder contains a StackChecking element that will toggle the status
of stack checking for that SPE. SPU stack checking can also be controlled using Tcl procedures provided with the
simulator. To enable stack checking for a specified SPU, use:

spu_st ack_check: : enabl e [spu_nunber]

Stack checking can be disabled with the Tcl statement

spu_st ack_check: : di sabl e [spu_nunber]
When the simulator detects SPU stack overflow, it halts the simulation and displays a message indicating that
overflow has occurred. Figure 4-1 shows the simulator console window and command window from a simulator
run that employed enable_stack_checking to detect a stack overflow in a Cell/B.E. application. Note: Another
approach for detecting stack overflows is to use the stack checking options provided by the compiler. The -fstack-
check complile flag results in the insertion of runtime tests which will detect stack overflow by checking the amount of
stack space available whenever the stack pointer is modified. The program halts in the event of overflow.

32

© IBM Corporation. All rights reserved.

root@(none):~ =S

MET: Registered protocol family 2

IP route cache hash table entries: 2048 (order: 2, 16384 bytes)

TCP established hash table entries: 8192 (order: 5, 131072 bytes)

TCP bind hash table entries: 8192 (order: G, 131072 bytes)

TCP: Hash tables configured (established 8132 bind 8192}

TCP reno registered

TCP bic registered

MET: Registered protocol family 1

Initializing disk O with devsz 1638400

YFS5: Mounted root (ext2 filesystem),

Freeing unuzed kernel memory: 164k freed

INIT: wersion 2,86 booting

touch: setting times of “Fetc/Fstab'i Function not implemented
Welcome to Fedora Core
Press 'I' to enter interactive startup,

INIT: Entering runlevel: 2

[root@(none) “1# callthru source ppushpl_sp > hpl_sp

[root@(none) “1# chmod +x hpl_sp

[root@{none} ~1% ./hpl_sp 256 1

Linpack(S,P,) 256 x 256, num_spez = 1, block_size=G4

WARNING: unable to open file ‘hugelinpack_mem,bin (errno=2), Using malloc heap,

?E thread invoked : speid[0] = 01334940

rootd@ (nonej:~ —-glx

Eile Edit View Terminal Tabs Help

250981169: (65247894): TCP bind hash table entries: 8192 (order: 5, 131072 bytes)
251110731: (65377179): TCP: Hash tables configured (established 8192 bind 8192)
251114244: (65380686): TCP reno registered

251134898: (65401153): TCP bic registered

251149778: (65415394): NET: Registered protocol family 1

251904951: (66168439): Initializing disk 0 with devsz 1638400

252137826: (66389241): VFS: Mounted root (ext2 filesystem).

252335429: (66586481): Freeing unused kernel memory: 164k freed

259520582: (73643333): INIT: version 2.86 booting

269148178: (83083965): touch: setting times of "/etc/fstab': Function not implemented
274678278: (B88489496): Welcome to Fedora Core

279830766: (93561742): Press 'I' to enter interactive startup.

396429817: (207639986): INIT: Entering runlevel: 2

450509924: (260745816): [root@(none) ~]# callthru source ppu/hpl_sp > hpl_sp
75318419257 (293185171): [root@(none) ~]# chmod +x hpl_sp

86478974975: (298463165): [root@(none) ~]# WARNING: 112022307222: Caught INTERRUPT S5ignal. Stopping 5
imulation

112022307222: ** Execution stopped: user interrupt, **

112022307222: ** finished running 309573161 instructions **

[+]

systemsim % enable_stack_checking 7 spu/solve

apu->breakpoint 16908

prog_start 7 O0x00016908 0x0001lcba8 Ox0003db50 0x24004080 0x24FFCODO Ox24FFB0OD1 0x24FF40D2

systemsim % mysim go

./hpl_sp 256 1

176080414605: (339744020): Linpack(5.P.) 256 x 256, num_spes = 1, block_size=64

176080430761: (339759603): WARNING: unable to open file /huge/linpack_mem.bin (errno=2). Using malloc

heap.

176090911445: (349189741): Matrix initialization complete ... starting SPEs
176093406892: (351672347): SPE thread invoked : speid[0] = Ox1834940

new break count == 0x0

apu->breakpoint lcba8

Stack overflow detetection enabled on SPU 7
SPU7: CPO, 0(0), O

SPU7: CP30, 0(0), O

STACK OVERFLOW DETECTED ON SPU 7!
176094700357: ** Execution stopped: user (tcl), ** =
176094700357: ** finished running 352963886 instructions **
systemsim %

(4]

Figure 4-1. Example of SystemSim’s stack overflow detection iacility

Bus errors caused by DMA errors

The simulator also provides assistance with identifying the cause of bus errors that occur because of an error in
processing a DMA request issued by an SPU. Common errors encountered in DMA processing are alignment errors
and attempts to access unallocated or protected areas of system memory. The alignment rules for DMAs specify that
transfers for less than 16 bytes must be "naturally aligned,” meaning that the address must be divisible by the size of
the transfer. Transfers of 16 bytes or more must be 16-byte aligned. The size can have a value of 1, 2, 4, 8, 16, or a

Debugging Features in Systemsim 33

multiple of 16 bytes to a maximum of 16KB. In addition, the low-order four bits of the Local Store address must match
the low-order four bits of effective address (in other words, they must have the same alignment within a guadwaord).
Any DMA that violates one of these rules will generate an alignment exception which is presented to the user as a
bus error. System memory addresses specified in DMA commands undergo address translation to ensure that the
storage area is allocated an accessible in the manner requested (read or write) by the DMA request. Errors in address
translation during DMA processing are also converted into bus errors.

The simulator checks the DMA alignment requirements and raises alignment exceptions as necessary to match the
behavior of the hardware. But in addition to this, the simulator also generates warning messages to aid the
programmer in finding and correcting these problems. Figure 4-2 illustrates a warning message, "WARNING:
441391050: GET command with illegal size (12) (< 16 and not O, 1, 2, 4, or 8)," (highlighted in red in the figure)
issued by the simulator for a DMA alignment exception.

root@(none):~

Eile Edit View Terminal Tabs Help
407284012: (262005934): [root@(none) ~]#410445416: ** Execution stopped: user (tcl), ** =
410445416: ** finished running 265158221 instructions **

423378778: (265231130):

423522284: (265374008): [root@(none) ~]# callthru source myprog > myprog

425346215: (267171099): [root@(none) ~]# chmod +x myprog

426709371: (268513650): [root@(none) ~]# ./myprog

WARNING: 441391050: GET command with illegal size (12) (< 16 and not O, 1, 2, 4, or 8)

WARNING: 441432560: SPEY: MFC_CMD_QUEUE channel count of 15 is inconsistent with number of available
DMA gqueue entries of 16

441645502: (283197654): Bus error

WARNING: 64685755007: Caught INTERRUPT Signal. Stopping Simulation

64685755007 ** Execution stopped: user interrupt, **

64685755007 : ** finished running 306556866 instructions ** 58

systemsim % I

(4]

Figure 4-2. Warning message from simuiator for DMA alignment excepion

Kernel debugging

Debugging the Linux kernel can be a difficult task, in part because the kernel is a complex piece of software, but also
because the debugger cannot rely on basic OS functions being available or working properly. On the Cell BE SDK,
kernel debugging is simplified because the IBM Full-System Simulator, part of the Cell BE SDK, allows a debugger
running on the host system to debug a Linux kernel running inside the simulator.

To exploit this feature, you must have a version of GDB that supports the 64-bit PowerPC® architecture. On 64-bit
PowerPC host systems, this version of GDB might be available as part of the standard OS installation. Otherwise,
download and build a version of GDB with the appropriate architecture support. (Note: We currently recommend
using GDB version 6.3 to interface with the simulator. Later versions of GDB have introduced new interactions that
cause problems for simulator GDB stub.) The following commands illustrate the steps needed to configure, compile,
and install the correct version of GDB..

#

Script to downl oad and build gdb for ppc64.
#

nkdir -p base

nkdir -p obj

wget -c ftp://ftp.gnu.org/pub/gnu/gdb/gdb-6.3.tar.bz2 -P base
tar jxvf base/gdb-6.3.tar.bz2

pushd obj

../ gdb-6.3/configure --target=powerpc64-1inux

make al |

make install

34 Kernel debugging @ IBM Corporation. All rights reserved.

popd
Simply cut and paste this into a file and execute it as a shell script, sh file. If the wget of the GDB source fails, download
it manually from one of the many mirror sites and comment out that line of the script. By default the install stage
installs into /usr/local/; for those who do not have write access to /usr/local, specify the —prefix option on configure
to specify a different installation directory (for example, configure —target=powerpc64- linux —prefix /home/sdkuser/
local).

Next you should build a version of the kernel that contains the debugging information. To do this, you need a
version of the Linux kernel source that contains support for the Cell BE platform. The easiest way to do this is to
download and install the kernel source RPM from the Linux on CBE-based Systems Web site at the Barcelona
Supercomputing Center (BSC, see Resources). The process for building the kernel depends on the host system,
installed tools, and other details, and is beyond the scope of this paper. This article only covers the necessary steps to
enable the debugging information. The example commands shown illustrate these steps on a Linux x86 platform
with Cell BE SDK 3.0 installed. To enable debugging information in the kernel, go to the directory where you will
build the kernel and type:

ARCH=power pc PLATFORM-cel | CROSS_COWPI LE=/ opt/cel | / bi n/ ppu- make xconfig

The make xconfig command brings up the configuration menu shown in Figure 4-3. Scroll down and click on the
"Kernel hacking” in the left-hand set of options, then click on the "Compile the kernel with debug info" (DEBUG_INFO)
on the right-hand side set of options. This option specifies that symbols and source information are retained in the
generated binary to allow source-level debugging. In some cases, you might also choose to turn off certain compiler
optimizations to make debugging easier. In particular, disabling the - fomit-frame-pointer optimization allows the
debugger backtrack command to work reliably, and changing the optimization level from -Os to -O0 will make it
easier for GDB to associate individual instructions with a line in the source code. After making all the desired changes,
save the configuration, exit the configuration dialog, and then rebuild the kernel.

o @@ | E|
Option P4/ Ope | g
Hardware Maonitoring support BD0etect Soft Lockups
Mise devices DICallect scheduler statistics
Muitmedia Capabilities Port drivers DiDebug memory allacations I
--Mudtimedia devices OSpinlock debugging
Dignal Vides Broadcasnng Devices B Sleap-nside-spinlack checking
=~ Graphics support Dlkobject deb
Conssle display drives suppon =
Seund B Debug Filesysiem
=-US8 support DOCheck for stack ovedlows
USE Gadget Suppon DK probes
-MMC/SD Card support DIStack utilization instrumentation
Infind and support DIEnablie debugger hocks
-SN Devices Dinclude PPCDRG realiime debugging o
=-File systems L] EUse separate kemel stacks when processing inlerrupts =
COROMDVD Fiesysiems =t
DOS{FATINT Filesystems Compile the kernel with debug info DEBUC KO}
Pseudo filesystems
~Miscellanesas flesystems 1 you say ¥ here the resuliing kemel image wil include
Pastition Types debugging infa resuking in a larger kemel image.
Native Language Support Say ¥ here anly if you plan to debug the kemel.
Prafiling supoort
H ungure, say N,
|-Security options
=-Cryptographic options
'“Hardware crypto devices r
\Libieary routines -
[AL | L

Figure 4-3. The make xconlig screen

Next, start the simulator with the newly built kernel. To ensure that the simulator is using the new kernel, create a
symbolic link named vmlinux to the new kernel in the current directory before starting the simulator. To verify that the
correct kernel is being used, check the name of the kernel file displayed by the simulator during start-up.

Now you are ready to start a debug session. First, start the simulator and click on the "Service GDB" button; notice that
the text of the button changes to "Waiting for GDB... ." In another window, change directories to the location where
you compiled vmlinux and start the GDB session with the command

/usr/l ocal/bi n/ power pc64-1inux-gdbtui vmnlinux

Debugging Features in Systemsim 35

then at the (gdb) prompt type

break start_kernel
target renote :2345
conti nue

You should see something very similar to Figure 4-4.

sdkuser® mambosdkl: fhome/sdkuser/kernel-2.6.16/objsi

Eile Edit View Terminal Tabs Help
J/home /sdkuser /kernel-2.6.16/1inux-2.6.16/init/main.c [E
438 ® Activate the first processor.
439 */
440
441 asmlinkage void __init start_kernel(void)
442 {
443 char * command_line;
444 extern struct kernel param __start__ param[], __stop__ param[];
445 I
446 * Interrupts are still disabled. Do necessary setups, then
447 * enable them
448 */
449 lock_kernel();
450 page_address_init();
451 printk (KERN_NOTICE);
452 printk(linux_banner);
453 setup_arch(&command_line);
454 setup_per_cpu_areas();
455
456 il
457 * Mark the boot cpu "online" so that it can call console drivers in
458 * printk() and can access its per-cpu storage.
450 */
460 smp_prepare_boot_cpu();
461
462 i
remote Thread 1 In: start_kernel Line: 449 PC:) a7 5a0)
This GDB was configured as "--host=i686-pc-linux-gnu --target=powerpc64-linux"...
(gdb) break start_kernel
Breakpoint 1 at Oxc0000000002e75a0: file proc_fs.h, line 199.
(gdb) target remote :2345
Remote debugging using :2345
[New Thread 1]
[Switching to Thread 1]
<signal handler called>
warning: Breakpoint address adjusted from 0x003aa300 to 0x00000000.
(gdb) continue
Continuing.
Breakpoint 1, start_kernel () at /home/sdkuser/kernel-2.6.16/1inux-2.6.16/init/main.c:449
(gdb) =]

Figure 4-4. The kernel debug session

Now GDB is attached to the simulator and can monitor and control the execution of the Linux kernel. From here it is
possible to set additional breakpoints, display variables by name, display processor registers, display a stack trace,
single-step execution, and so on.

Kernel debugging @ IBM Corporation. All rights reserved.

CHAPTER 5

Accessing the Host
Environment

This chapter describes several mechanisms that are provided to allow interactions between
the host and simulated systems. Topics in this chapter include:

s The Callthru Ulility
« Bogus Network Support

@ International Business Machines Corporation. Al rights reserved. 37

The Calilthru Utility

The callthru utility allows you to copy files between the host system and the simulated system while it is running. This
utility runs within the simulated system and accesses files in the host system using special callthru functions of the
simulator. The source code for this utility is provided with the simulator in the sample/callthru directory as a sample of
the use of the simulator callthru functions. In the Cell SDK, the callthru utility is installed as a binary application in the
simulator system root image in the /usr/bin directory. The callthru utility supports the following options:

m To write standard input into <filename> on the host system, issue

callthru sink <fil ename>

= To write the contents of <filename> on the host system to standard output, issue

callthru source <fil ename>

Redirecting appropriately lets you copy files between the host and simulated system. For example, to copy the /tmp/
matrix_mul application from the host into the simulated system and then run it, issue the following commands in the
console window of the simulated system:

callthru source /tnp/matrix_mul > nmatrix_mul

chmod +x matri x_nul

./ matrix_nmul

Another commonly used feature of the callthru utility is the exit option, which will stop the simulation, similar to the
stop button of the GUI, but initiated by the callthru utility inside the simulator rather than through user interaction.
This is especially useful for constructing “scripted” executions of the simulator that involve alternating steps in the
simulator and the simulated system.

m o stop the simulator and return control back to currently active run script or the GUI / command line, issue

callthru sink <fil enane>

Bogus Network Support

Bogus network support was developed to enable network communications with reasonable performance between
the simulated system and other systems. This is accomplished using a special ethernet device that uses callthru
functions of the simulator to send and receive network packets to the host system. To enable communication with
other systems, the host system must be configured to relay packets from the simulated system out to the real network.

The bogus network facility can be configured and used in a variety of ways. A detailed description of the Linux and
SystemSim commands to set up and manage bogus network communications is provided below. For user
convenience, the most common approach to using the bogus network has been automated using Tcl procedures.
These will be described first since most users should find these sufficient for simple network communication between
the host and simulated system.

Bogusnet Tcl functions

To simplify the process of using the bogus network features of the simulator, two Tcl procedures are provided that
automate most of the steps required to set up the network interface and then clean up once the simulation has
finished. These procedures are:

% bogusnet::init <network> ;# To initialize the network
% bogusnet : : cl eanup ;# To free network resources

The <network> parameter specifies the IP network to be used by the bogusnet facility. Typically this will be a network
that has been reserved for use in private networks, such as 172.20.0. To use these Tcl procedures, simply issue the

38

Bogus Network Support @ IBM Corporation. Al rights reserved.

bogusnet:init before initiating the Linux boot process, and issue the bogusnet:cleanup just before exiting the
simulator.

Certain tasks for configuring the bogus network require root privileges. A special utility, snif (for Systemsim Network
InterFace) is provided with the simulator to perform these privileged configuration tasks. The snif utility is designed to
perform only those tasks required to access the bogus network support, and nothing else (details on the tasks
performed by snif are provided below). This means that non-root users simply need to be able to execute the snif
utility with root privileges to be able to use the bogus network support.

There are a variety of mechanisms that can be used to provide these privileges. The default approach used in the SDK
is to install the snif utility as setuid root. This means that snif will run with root privileges when run by any user. If this
arrangement is considered undesirable, other approaches can used. The simulator includes an alternate version of
the bogusnet initialization procedure, bogusnet:sudo_init, that uses sudo as the means to provide snif with root
privileges. The following entries should be added to the sudoers file to give the non-root user sdkuser the
authorization to perform these tasks:

sdkuser ALL=(ALL) NOPASSWD: /opt/ibm systensi mcell/bin/snif

Extended Description of Bogusnet support

There are three key components to Bogus net communications:

1. Afacility on the host system that provides SystemSim with a path to the network. The TUN/TAP support available
for Linux is @ good choice for this component, and we assume TUN/TAP in the remainder of this how-to.

2. The systemsim support for bogus net. This support is not enabled by default. Simulator commands are used to
enable the bogus net support.

3. An OS kernel with a bogus network driver. Patches for several versions of linux are available.

Setting up TUN/TAP on the host system

To start, we want to make sure that TUN/TAP support is available on the host system. To do this, check your kernel
config file for CONFIG_TUN=m or CONFIG_TUN=y.

% grep CONFI G_TUN= /boot/config-"unanme -r°

TUN/TAP is configured in the stock kernels of many newer distributions, including Fedora Core 6. If your kernel does
not include TUN/TAP support, you will need to either install a new kernel or reconfigure/rebuild your kernel.

Also you need to make sure /dev/net/tun exists.

%ls -1 /dev/net/tun

If /dev/net/tun does not exist, make it (as root) with:

% nknod /dev/net/tun ¢ 10 200

At this point, the TUN/TAP device should be ready for use by the simulator bogusnet support if the simulator is run by
the root user. However, to make Tun/Tap support available to non-root users, additional steps are required. These are
covered in the following section.

Setting up a TUN/TAP interface for a non-root user

The procedure for making TUN/TAP available to non-root users depends on the version of Linux kernel being used
on the system. Prior to Linux 2.6.18, a simple though perhaps not very secure means of doing this is to allow all users
read and write access to the /dev/net/tun device. This can be accomplished with a simple chmod command (as
root):

Accessing the Host Environment 39

% chnod 666 /dev/ net/tun

More secure approaches, such as restricting access by groupid, are also possible. Note: Many newer Linux
distributions include support for udev, which is designed to dynamically manage device nodes along with their
permissions and other attributes. For these systems, udev may be used to create /dev/net/tun with the desired
permissions. For example, in Fedora Core 6 systems, this can be accomplished by creating a file (like systemsim.rules)
in the directory /etc/udev/rules.d/ containing:

KERNEL=="t un", MODE="0666"

Note: Some distributions that include udev support explicitly disable udev support for /dev/net/tun. In particular,
udev support for /dev/net/tun is disabled in Fedora Core 4 and Fedora Core 5.

For systems using 2.6.18 and later versions of Linux, the kernel imposes a further restriction on access to the TUN/TAP
facility, effectively preventing non-root users from creating new TUN/TAP interfaces. For these systems, Non-root users
can only access existing TUN/TAP interfaces which were previously created by root and are designated as owned by
that user. Unfortunately, there are no standard utilities for creating / assigning TUN/TAP interfaces, so the snif (for
Systemsim Network InterFace) utility has been developed and provided with simulator for this purpose.

The snif utility is available in the simulator bin directory. To create a new TUN/TAP interface with IP address 172.20.0.1
for use by a user with uid 5555, issue the following command:

% snif -c -u 5555 172.20.0.1

To create a new TUN/TAP interface, snif opens the /dev/net/tun device file and issues a sequence of ioctl commands
to set the name of the interface (to “taps7” where n is chosen as the first available tap interface name), set the owner
of the interface to the specified uid, and make the interface persistent. snif then uses the ifconfig command to set the
IP address for the interface. If these operations are successful, snif will display the name of the interface (typically
'tapQ’) that was created. This interface name must be specified on the simulator command to initialize the simulator
bogus net support.

snif will establish a private network on the host system to which the bogus network device on the simulated system
can attach after it is booted. We use the IP address 172.20.0.1 since it belongs to one of the special ranges of
addresses that have been reserved for use in private networks (see [Wikipedia: classful network]).

The TUN/TAP interface created by snif is persistent, meaning that it remains allocated until explicitly deleted (or until
the host system is restarted). Therefore, it is important to release this interface when it is no longer required (such as at
the end of the simulator session). To free a TUN/TAP interface previously allocated by snif, issue the following
command:

%snif -d <interface nane>

where the <interface name> parameter is the name of the interface to be freed, typically "tap0”.

Configuring SystemSim support for Bogus Net

To enable bogus net support, you need to issue simulator commands that configure and initialize the bogus
network. These commands must be issued before booting the Linux kernel on the simulator so that Linux recognizes
the bogus network device during its boot process. The general form of the command to initialize bogus net is

mysi m bogus net init O <mac address> <interface name> <irqg>

The <mac address> parameter is the MAC Hardware Address you want the emulated ethernet to use. It should be
unique on your network (i.e. not used by any other emulated hosts, or by any host network adapter). The <interface
name> parameter is the name of the interface to be used, typically "tap0’. The <irg> parameter specifies the interrupt
request queue id to be used by bogus network device. Some simulated machines, such as Cell, do not include a

40

Bogus Network Support @ IBM Corporation. Al rights reserved.

model for the external interrupt controller, and for these machines the bogus network device must be operated in
polled mode, which is specified by a value of O for the <irg> parameter. The GPU/L simulator does include an external
interrupt controller model, and for GPU/L the <irg> parameter should be set to 9.

The bogus net device driver

The final component required for bogus network communication is an OS kernel with the bogus net device driver.
This driver can be either built into the kernel or packaged as a loadable module. Currently, the bogus net device
driver is not included in the mainline kernel and must be added as a patch on top of the kernel. Patches for several
versions of Linux are available. Depending on where you obtained the kernel you use on SystemSim, this step may
have already be done for you.

Connecting to the simulation host

Once these components are in place, you are ready to use bogus net for network communications with the
simulated system. Start the simulation and when you reach the linux prompt enter the following commands on the
simulated console (UART):

% nount /proc
% ifconfig eth0O 172.20.0.2 netmask 255.255.255.0

You should then be able to ping the host system from the simulated system (and vice-versa)

% ping -c 1 172.20.0.1

Troubleshooting BogusNet

ping of system host from simulated host results in ping icmp open socket: Operation not permitted:

This was seen in the Cell kernel. First thing, check and see if you can ping the simulated host from the
system host. If this is working, you know that the bogus network traffic is flowing in both directions
and the problem is most likely with your kernel or root disk — most likely the latter.

operations seems to hang :

Beware of firewalls/ipchains/iptables — most like you have a firewall of some sort blocking the port.
Either disable your firewall or open up the specific port.

Accessing the Host Environment 41

42 Bogus Network Support @ IBM Corporation. Al rights reserved.

	1 Introduction to the IBM Full-System Simulator 1
	2 The SystemSim Graphical User Interface 7
	3 SystemSim Command Syntax and Usage 23
	4 Debugging Features in SystemSim 31
	5 Accessing the Host Environment 37
	Preface
	Introduction to the IBM Full-System Simulator
	Simulator Overview
	Invoking the Simulator
	Starting a Simulation in SMP Mode
	Starting a Simulation with an Alternate Processor Implementation
	Simulator Basics
	Interacting with the Simulator
	Operating-System Modes

	The SystemSim Graphical User Interface
	Graphical User Interface
	The Simulation Panel
	PPE Components
	SPE Components
	Simulator and BE Components

	GUI Buttons

	SystemSim Command Syntax and Usage
	Understanding and Using Simulator Commands
	Defining and Managing a Simulated Machine
	A typical initial run script

	Summary of Top-Level Simulator Commands

	Debugging Features in SystemSim
	Detecting SPU Stack Overflow
	Bus errors caused by DMA errors
	Kernel debugging

	Accessing the Host Environment
	The Callthru Utility
	Bogus Network Support
	Bogusnet Tcl functions
	Extended Description of Bogusnet support
	Setting up TUN/TAP on the host system
	Setting up a TUN/TAP interface for a non-root user
	Configuring SystemSim support for Bogus Net
	The bogus net device driver
	Connecting to the simulation host
	Troubleshooting BogusNet

