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Preface
The IBM Full-System Simulator, internally referred to as “Mambo,” has been developed and refined by the IBM Austin

Research Lab (ARL) in conjunction with several large system design projects built upon the IBM Power architecture.

As an execution-driven, full-system simulator, the IBM Full-System Simulator has facilitated the experimentation and

evaluation of a wide variety of system components for core IBM initiatives. The IBM Full-System Simulator for the Cell

Broadband Engine (Cell/B.E.) Processor, available from the IBM alphaWorks Emerging Technologies web site,

enables development teams both within IBM and externally to simulate a Cell/B.E. processor-based system in order to

develop and enhance application support for this platform.

The IBM Full System Simulator User’s Guide describes the basic structure and operation of the IBM Full-System

Simulator and its graphic user interface (GUI) and command line user interface.

Intended Audience
This document is intended for designers and programmers who are developing and testing applications that are

designed to run on systems based on the Cell Broadband Engine Processor. Potential users include:

System and software designers

Hardware and software tool developers

Application and product engineers

Validation engineers

Using This Version of the Guide
This version of the IBM Full System Simulator User’s Guide applies to version 3.0 of the IBM Full-System Simulator for

the Cell Broadband Engine Processor, available from IBM’s alphaWorks Emerging Technologies website located at

http://www.alphaworks.ibm.com/tech/cellsystemsim. 

The guide is organized into topics that cover concepts and procedures for execution and analysis of CBEA

applications. This book includes the following chapters and appendices:

Chapter 1, Introduction to the IBM Full-System Simulator, describes the IBM Full System Simulator developed by

the IBM Austin Research Lab (ARL), and introduces the Cell Broadband Engine Architecture (CBEA) modeled by

the IBM Full-System Simulator.

Chapter 2, The SystemSim Graphical User Interface, provides an overview of the graphical user interface of the

IBM Full System Simulator

Chapter 3, SystemSim Command Syntax and Usage, describes the IBM Full System Simulator command

framework and introduces the structure, format, and usage of simulator commands.
v© International Business Machines Corporation. All rights reserved.



Chapter 4, Debugging Features in SystemSim describes some of the simulator’s debugging features that are

specifically designed for SPU debugging.

Chapter 5, Accessing the Host Environment describes several mechanisms that are provided to allow

interactions between the host and simulated systems.

What’s New in this Release
Release 3.0 of the IBM Full-System Simulator for the Cell Broadband Engine provides the following enhancements:

A new fast simulation mode using just-in-time translation that improves simulation speed by a factor of 10 or

more on 64-bit host platforms.

Improved performance models for the PPE and memory subsystems, particularly for configurations with two

Cell/B.E. processors.

New and enhanced tools for identifying programming errors in Cell/B.E. applications, such as DMA command

errors and SPU stack overflow.

Support for booting from an emulated IDE?

Conventions
This guide provides screen captures to illustrate example interface elements and uses code samples to represent

example implementations. Your software interface or development environment may vary from these examples

depending on your system and product environment.

The following typographical components are used for defining special terms and command syntax:

Table 2-1. Typographical Conventions

Convention Description

Bold typeface Represents literal information, such as:

Information and controls displayed on screen, including menu options, 
application pages, windows, dialogs, and field names.

Commands, file names, and directories.

In-line programming elements, such as function names and XML elements 
when referenced in the main text.

Italics typeface Italics font is used to emphasize new concepts and terms, and to stress 
important ideas. Additionally, book and chapter titles are displayed in italics.

Sans serif typeface Represents example code output, such as XML output or C/C++ code 
examples.

Italic sans serif words or characters in code and commands 
represent values for variables that you must supply, such as arguments to 
commands or path names for your particular system. For example: 
cd /users/your_name

... (Horizontal or Vertical ellipsis)

.

.

.

In format and syntax descriptions, an ellipsis indicates that some material has 
been omitted to simplify a discussion.

{ } (Braces) Encloses a list from which you must choose an item or information in syntax 
descriptions.

[ ] (Brackets) Encloses optional items in format and syntax descriptions. For example, in 
the statement SELECT [DISTINCT], DISTINCT is an optional keyword.
vi Preface © IBM Corporation. All rights reserved.



Related Guides and Recommended Reference

The IBM Full-System Simulator

Performance Analysis with the IBM Full-System Simulator describes facilities and techniques for application and system

performance analysis using the IBM Full-System Simulator. This includes facilities to capture and process statistics on

the performance of computation kernels, library routines, and full applications in the context of a full-system

execution. Performance Analysis with the IBM Full-System Simulator is commonly distributed with alphaWorks

releases in the docs directory as SystemSim.PerfAnalysis.pdf.

The simulator’s command interface is implemented as an extension of the Tool Control Language (Tcl), and the

graphical user interface is implemented in the Tk package. Information about Tcl and Tk syntax and features can be

found in:

Practical Programming in Tcl and Tk by Brent B. Welch. Prentice Hall, Inc.

The Cell/B.E. processor

Documentation for the Cell/B.E. processor is available in the IBM online technical library at:

http://www.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

Among the documents in this library, the following are particularly helpful in understanding the operation of the IBM

Full- System Simulator:

Cell Broadband Engine Architecture

Cell Broadband Engine Programming Handbook

Cell Broadband Engine Registers

PowerPC Base

The following documents can be found on the developerWorks Web site at: 

http://www.ibm.com/developerworks/eserver/library

PowerPC Architecture Book, Version 2.02

Book I: PowerPC User Instruction Set Architecture

Book II: PowerPC Virtual Environment Architecture

Book III: PowerPC Operating Environment Architecture

| (Vertical rule) Separates items in a list of choices enclosed in { } (braces) in format and 
syntax descriptions.

UPPERCASE Indicates keys or key combinations that you can use. For example, press 
CTRL + ALT + DEL.

Hyperlink Web-based URIs are displayed in blue text to denote a virtual link to an 
external document. For example: http://www.ibm.com

The note block denotes information that emphasizes a concept or provides 
peripheral information.

Table 2-1. Typographical Conventions

Convention Description

NOTE This is note text.
viiPreface



Contacting the IBM Full-System Simulator Development Team
The IBM Full-System Simulator development team at ARL is very interested in hearing from you about your experience

with the IBM Full-System Simulator and its supporting information set. Should you have questions or encounter any

issues with the IBM Full-System Simulator, visit the project forum at

http://www.alphaworks.ibm.com/tech/cellsystemsim/forum.
viii Preface © IBM Corporation. All rights reserved.



CHAPTER 1

Introduction to the IBM
Full-System Simulator
This chapter provides an overview of the IBM Full System Simulator, SystemSim, developed
by the IBM Austin Research Lab (ARL), and provides concepts and procedures for using the
simulator for the Cell Broadband Engine Processor. It also describes configuration
parameters for setting up and running the simulation environment in standalone and Linux
mode. Topics in this chapter include:

Simulator Overview

Invoking the Simulator

Starting a Simulation in SMP Mode

Starting a Simulation with an Alternate Processor Implementation

Simulator Basics
1© International Business Machines Corporation. All rights reserved.



Simulator Overview
The IBM Full-System Simulator for the Cell Broadband Engine is a generalized simulator that can be configured to

simulate a broad range of full-system configurations. It supports functional simulation of complete systems based on

the Cell Broadband Engine processor, including simulation of the PPE, SPUs, MFCs, memory, disk, network, and

system console. The SDK, however, provides a ready-made configuration of the simulator for Cell Broadband Engine

system development and analysis. The simulator also includes support for performance simulation (or timing

simulation) of certain components to allow users to analyze performance of Cell Broadband Engine applications. It

can simulate and capture many levels of operational details on instruction execution, cache and memory subsystems,

interrupt subsystems, communications, and other important system functions.

Figure 1-1 shows the simulation stack. The simulator is part of the software development kit (SDK), which is available

through IBM alphaWorks Emerging Technologies at http://www.alphaworks.ibm.com/tech/cellsystemsim.

Figure 1-1. Simulator Stack for the Cell Broadband Engine

If accurate timing information and performance statistics are not required, the simulator can be used in its functional-

only mode, simulating the architectural behavior of the system to test the functions and features of a program. For

performance analysis, the simulator can be used in performance simulation mode. Simulator configurations are

extensible and can be modified using Tool Command Language (Tcl) commands to produce the type and level of

analysis required. 

The simulator is a general tool that can be configured for a broad range of microprocessors and hardware

simulations. The SDK, however, provides a ready-made configuration of the simulator for Cell Broadband Engine

system development and analysis. 

Invoking the Simulator
The simulator is invoked using the systemsim command. This command is in the bin directory of the systemsim-cell

release, which should be added to the user's PATH before invoking systemsim.

When the simulator starts, it loads an initial run script which typically configures and initializes the simulated machine.

The name of the initial run script can be passed to systemsim with the -f option. When not specified on the command

line, the simulator will look in the current directory for the file .systemsim.tcl, and if present, will use this file as the initial

run script. Otherwise, it will use the file lib/cell/systemsim.tcl provided with the systemsim-cell release. When specified

NOTE By default, the simulator is installed in the /opt/ibm/systemsim-cell directory. This directory will be 
used in all the examples shown in this book.
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using the -f option, the name of the initial run script can contain an absolute or relative path. The simulator searches

for Initial run scripts with a relative path by first looking in the current directory, and then in the lib/cell directory of the

systemsim-cell release, and finally in the lib directory of the systemsim-cell release. If the simulator fails to find the initial

run script specified with the -f option, it issues an error message and exits.

It is generally the task of the initial run script to locate the operating system and filesystem images to be used by

simulated machine. For the Cell simulator, the default initial run script searches for a Linux kernel image named

vmlinux and a filesystem image named sysroot_disk. The script will look first in the current directory and then in the

systemsim-cell/images/cell directory, and uses the first instance it finds for these images. If the script fails to find either

of these images in one of these locations, it will print an error message and terminate the simulator.

The following examples illustrate various ways to invoke the simulator. These examples assume that the simulator was

installed into /opt/ibm/systemsim-cell. 

1. To start the simulator with the GUI window enabled, specify the "-g" option on the command line when 

invoking systemsim. For example, to run the simulator with the GUI using either the user’s .systemsim.tcl or the 

simulator’s lib/cell/systemsim.tcl as the initial run script, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -g

2. To run the simulator without the GUI, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim 

If the user has created a run script named .systemsim.tcl in the current directory, the simulator will use this as the

initial run script. Otherwise, the simulator uses systemsim.tcl in the lib/cell directory of the systemsim-cell release

as the initial run script.

3. To run the simulator without the gui, without a console window (-n), in quiet mode (-q), using the initial run 

script myrun.tcl, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -n -q -f myrun.tcl 

When the simulator starts, the window in which it was started becomes the simulator command window where you

can enter simulator commands. The simulator also creates the console window (unless this was disabled with -n)

which is initially labeled UART0 in the window’s title bar, and a GUI window if this was requested with the -g option.

Starting a Simulation in SMP Mode
The default system configuration that is used when the simulator is started is a system with a single Cell Broadband

Engine processor. Beginning in Version 1.1, the simulator provides a means to specify an alternate system

configuration that uses two Cell Broadband Engine processors, referred to as SMP mode or Dual BE mode. There are

a variety of ways to specify the SMP configuration, but for most users, the best approach is to simply use an alternate

initial run script provided with the simulator. This script is called config_smp.tcl, and is located in the lib/cell directory

of the systemsim-cell release. To use this run script to start the simulator with a configuration with two Cell Broadband

Engine processors, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -f config_smp.tcl

The config_smp.tcl script can also be sourced, using the Tcl source command, from within a user’s run script, which

allows scripted simulator executions for SMP configurations.

There is also another approach to configuring the simulator to use an SMP mode configuration. This approach

utilizes a special procedure, called config_hook, which is called from the lib/cell/systemsim.tcl file to modify the

configuration before the machine is instantiated. In this approach, the config_dual_be command is used to modify

the configuration to have two Cell Broadband Engine processors. The following example mySMPsim.tcl file illustrates
3Introduction to the IBM Full-System Simulator



a custom initial run script containing sample code that the config_hook procedure to issue the config_dual_be

command to modify the system configuration.

The config_hook procedure is a general mechanism to modify the configuration for a simulated machine. In

particular, line 3 configures the machine to run in SMP mode. You can add additional configuration settings to the

config_hook procedure in the same manner.

1. To start the simulator with the GUI window enabled using the initial run script mySMPsim.tcl that contains newly 

defined SMP mode setting issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -g -f mySMPsim.tcl

The simulator GUI is launched, in which each BE and its PPE and SPE components are displayed in the vertical

panel. See Chapter 2, “The SystemSim Graphical User Interface” for more information about GUI elements and

windows.

2. To run the simulator without the gui using the initial run script mySMPsim.tcl that contains newly defined SMP 

mode setting issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -f mySMPsim.tcl

Starting a Simulation with an Alternate Processor Implementation
IBM has announced plans to develop a new CBEA-compliant processor with a fully pipelined, enhanced double

precision SPU. Beginning in Version 2.1, the simulator provides a model of this planned future processor. There are a

variety of ways to create and run simulations using this new processor model, but for most users, the best approach

is to simply use an alternate initial run script provided with the simulator. This script is called config_edp_smp.tcl, and

is located in the lib/cell directory of the systemsim-cell release. This initial run script creates an SMP configuration in

which both processors have the fully pipelined, enhanced double precision SPUs. To use this run script, issue:

PATH=/opt/ibm/systemsim-cell/bin:$PATH systemsim -f config_edp_smp.tcl

Simulator Basics

Interacting with the Simulator

There are two ways to interact with the simulator: 

Issuing commands to the simulated system

Issuing commands to the simulator

The simulated system is the Linux environment on top of the simulated Cell Broadband Engine, where you run and

debug programs. You interact with it by entering commands at the Linux command prompt, in the console window.

The console window is a Linux shell of the simulated Linux operating system.

You can also control the simulator itself, configuring it to do such tasks as collect and display performance statistics on

particular SPEs, or set breakpoints in code. These commands are entered at the simulator command line in the

simulator command window, or using the equivalent actions in the graphical user interface (GUI). The GUI is a

0:  # top-level script to set SMP mode configuration
1:  
2:  proc config_hook {conf} {
3:   config_dual_be $conf
4:  }
5:  
6:  source .systemsim.tcl
4 Starting a Simulation with an Alternate Processor Implementation © IBM Corporation. All rights reserved.



graphical means of interacting with the simulator. The GUI is described in “The SystemSim Graphical User Interface”

on page 7.

Figure 1-2 shows the simulator windows, and the layers with which they communicate.

Figure 1-2. Simulator Structure and Screens

All simulator commands must be entered at the prompt in the command window (that is, the window in which the

simulator was started). Some of the important commands are shown in Table 1-1:

The simulator prompt is displayed in the command window when the simulation is stopped, or paused. When the

simulation is running, the command window also displays a copy of the output to the console window and

simulation-cycle information every few seconds, and the prompt is not available. To stop the simulation and get back

the prompt—use the Ctrl-C key sequence. This will stop the simulation, and the prompt will reappear.

Operating-System Modes

A key attribute of the IBM Full-System Simulator is its ability to boot and run a complete PowerPC system. By booting

an operating system, such as Linux, the IBM Full-System Simulator can execute many typical application programs

Table 1-1. Top-level commands for the IBM Full-System Simulator for the Cell Broadband Engine

Simulator Command Description

quit Closes the simulation and exits the simulator.

help Displays a list of the available simulator commands.

mysim go Starts or continues the simulation. The first time it is issued, the simulator boots 
the Linux operating system on the simulation.

mysim spu n set model mode Sets SPEn into model mode, where n is a value from 0 to 7 and mode is pipeline, 
instruction. or fast.

mysim spu n stats print Displays to the simulator command window, the performance analysis statistics 
collected on SPUn, where n is a value from 0 to 7. Statistics are only collected 
when the SPU is executing in pipeline mode.

Base Processor

Linux Operating System

IBM Full-System Simulator

Cell Simulation: mysim

Linux on Simulation

[user@bringup /]*systemsim %

Command Window GUI Window Console Window

Simulator

Base 
Simulator
Hosting 
Environment
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that utilize standard operating system functionality. Alternatively, applications can be run in standalone mode, in

which all operating system functions are supplied by the simulator and normal operating system effects do not occur,

such as paging and scheduling. The IBM Full-System Simulator can also execute SPU programs in standalone mode

on a given SPU. These two approaches to running applications on the simulator are referred to as Linux mode and

standalone mode.

Linux Mode. In Linux mode, after the simulator is configured and loaded, the simulator boots the Linux

operating system on the simulated system. At runtime, the operating system is simulated along with the running

programs. The simulated operating system takes care of all the system calls, just as it would in a nonsimulation

(real) environment.

Standalone Mode. In standalone mode, the application is loaded without an operating system. Standalone

applications are user-mode applications that are normally run on an operating system. On a real system, these

applications rely on the operating system to perform certain tasks, including loading the program, address

translation, and system-call support. In standalone mode, the simulator provides some of this support, allowing

applications to run without having to first boot an operating system on the simulator.

However, there are limitations that apply when building an application to be loaded and run by the simulator

without an operating system. For example, applications should be linked statically with any libraries they require since

the standard operating system shared libraries are not available in standalone mode. Another example is support for

virtual memory address translation. Typically, the operating system provides address-translation support. Since an

operating system is not present in standalone mode, the simulator loads executables without address translation, so

that the effective address is the same as the real address. Therefore, all addresses referenced in the executable must

be valid real addresses. If the simulator has been configured with 64 MB of memory, all addresses must fit in the

range of x‘0’ to x‘3FFFFFF’.
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CHAPTER 2

The SystemSim Graphical
User Interface
This chapter provides an overview of the graphical user interface of the IBM Full System
Simulator. Topics in this chapter include:

Graphical User Interface
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Graphical User Interface
The simulator’s GUI offers a visual display of the state of the simulated system, including the PPE and the eight SPEs.

You can view the values of the registers, memory, and channels, as well as viewing performance statistics. The GUI

also offers an alternate method of interacting with the simulator. Figure 2-1 shows the main GUI window that

appears when the GUI is launched.

Figure 2-1. Graphical User Interface for the Simulator

The main GUI window has two basic areas: the vertical panel on the left, and the rows of buttons on the right. The

vertical panel represents the simulated system and its components. The rows of buttons are used to control the

simulator. 

When the simulator is started it creates a simulated machine containing a Cell Broadband Engine processor and

displays the main GUI window, labeled with the name of the simulator program. When the GUI window first

appears, click the Go button to boot the Linux operating system.

If the simulator is launched in SMP, or dual Cell-based system, mode (see “Starting a Simulation in SMP Mode” on

page 3), the vertical panel in the main window displays each BE with its components, as shown in Figure 2-2.
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Figure 2-2. Simulator Graphical User Interface Started in SMP Mode

The Simulation Panel

When the main GUI window first appears, the vertical panel contains a single

folder labeled mysim. To see its contents, click on the plus sign (+) in front of the

folder icon. When the folder is expanded, you can see its contents; these include a

PPE (labelled PPE0:0:0 and PPE0:0:1, the two threads of the PPE), and eight SPEs

(SPE0... SPE7). Processor labels are color-coded to indicate the current state

(running/stalled/halted) of the processor. The folders representing the processors

can be further expanded to show the viewable objects and the options and

actions available. Figure 2-3 on page 142 shows the vertical panel with several of

the processor folders expanded.

PPE Components

There are six PPE components visible in the expanded PPE folder: PCTrack,

PCCCore, PPCStack, GPRegs, FPRegs and PPC_Xlate. Double-clicking a folder icon

brings up a window displaying the program-state data. Several of the available

windows are shown in the following figures.

The PPE PC Tracker window is displayed when the user double-clicks on the PCTrack folder icon. An example of this

window is shown in Figure 2-4. The window displays the region of storage containing the instructions that are

currently being executed by the PPE. Each line of the window shows the effective and real address of a word in

NOTE When the simulator is launched in SMP mode, each BE (BE 0 
and BE 1) contains the same contents described in this section.

BE 0
Components

BE 1
Components

Figure 2-3. Project and 
Processor Folders
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storage and its contents in hexadecimal, ASCII, and as a disassembled PowerPC instruction. The highlighted line in

the window indicates the current position of the program counter. The Step button at the bottom of the window

can be used to advance execution of the system until the PPE completes one instruction. Double-clicking on a line

will toggle a breakpoint on that line (indicated by the red B at the front of the line), and hovering over a register

name in the disassembled instruction will display the contents of that register.

Figure 2-4. PPE PC Tracker Window

The PPE Core window (PPCCore) shows the contents of all the registers of the PPE, including the general purpose

registers, floating point registers, Vector/SIMD Multimedia Extension registers, and special purpose registers. Figure 2-

5 shows the PPE Core window.

Figure 2-5. PPE Core Window

The PPE Stack dialog (PPCStack) shows a back trace of the program call stack of the application running on the

selected PPE processor. Figure 2-6 shows the PPC Stack dialog for PPE 0:0:0. When the simulator can locate the

object file that maps to this region of memory, it will display symbol and source file line information for the addresses

in the call stack if these are available. Clicking on the address text within a trace entry will bring up the system memory

dialog to display the contents of memory at this address.
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Figure 2-6. PPC Stack Trace Dialog Window

The general-purpose registers (GPRs) and the floating-point registers (FPRs) can be viewed separately by double-

clicking on the GPRegs and the FPRegs folders respectively. Figure 2-7 shows the GPR window, and Figure 2-8 on

page 11 shows the FPR window. As data changes in the simulated registers, the data in the windows is updated and

registers that have changed state are highlighted.

Figure 2-7. PPE General-Purpose Registers Window

Figure 2-8. PPE Floating-Point Registers Window

The PPC Address Translation window (PPC_Xlate) shows the contents of the main address translation structures for

the PPE, including the segment lookaside buffers (SLBs) and translation lookaside buffers (TLBs). Please refer to the

Cell Broadband Engine Programming Handbook, Chapter 4 Virtual Storage Environment for information on the

contents of these structures.

SPE Components

The SPE folders (SPE0 ... SPE7) each contain eleven elements. Four of the elements -- SPUTrack, SPUCore,

SPUChannel, and SPUMemory -- present windows that show data in the registers, channels, and memory of the SPU.

Two of the elements -- MFC and MFC_XLate -- present windows that show state information on the MFC. Two

elements -- SPUStats and LS_Stats -- display dialogs containing statistics on the operation of the SPU core and local

storage. The last three sub-items — Model, StackChecking, and Load-Exec — represent actions to perform on the SPE.

The SPU PC Tracker window is displayed when the user double-clicks on the SPUTrack folder icon for an SPE. An

example of this window is shown in Figure 2-9. This window operates in a similar manner to the PPE PC Tracker
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window described above. The window displays the region of the SPU’s local storage containing the instructions that

are currently being executed by the SPU. Each line of the window shows the address of a word in storage and its

contents in hexadecimal, ASCII, and as a disassembled SPU instruction. The highlighted line in the window indicates

the current position of the program counter. The Step button at the bottom of the window can be used to advance

execution of the system until the SPU completes one instruction. Double-clicking on a line will toggle a breakpoint on

that line (indicated by the red B at the front of the line). Like the PPE PC Tracker window, this dialog will display the

contents of a register if the mouse is positioned over the register name in the disassembled instruction. In addition,

hovering over a channel name will display the channel count and channel value, as shown in Figure 2-9.

Figure 2-9. SPU PC Tracker Window

Figure 2-10 shows the SPU Core Window, which displays the contents of all the registers of the SPU in a pair of

scrollable list boxes. Below each list box is a display that shows the contents of the selected register formatted as four

32-bit integers, four 32-bit single precision floats, and two 64-bit double precision floats. The window also displays the

current value of the SPU’s floating point status and control register (FPSCR) and status register.

Figure 2-10. SPU Core Window

Figure 2-11 shows the SPU Channels window, which displays the channel contents and channel count for each of

the SPU’s channels. As in the simulated registers, the data in this window is updated as the simulation proceeds and
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values that have changed state are highlighted. The BP button next to each channel opens a dialog for setting a

breakpoint on accesses to the channel, which can be conditional on the value read or written by the access. 

Figure 2-11. SPU Channels Window

The SPU Memory Window displays the contents of a region in the SPU’s local memory. An example of this dialog

window is shown in Figure 2-12. The starting address and size of the region are specified in the fields at the bottom

of the dialog window. Memory contents can be displayed as hex and ASCII strings or as SPU instructions. The SPU

Memory Window also allows users to set breakpoints on read or write accesses to a region of SPU memory.
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Figure 2-12. SPU Memory Window

Figure 2-13 shows the MFC window, which provides internal MFC state information. Figure 2-14 on page 15 shows

the MFC_XLate window, which provides translation structure state information.
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Figure 2-13. SPE MFC Window

Figure 2-14. SPE MFC Address Translation Window

The next two SPE elements display statistics about the SPU core and local storage. Double-clicking on the SPUStats

element will display the SPU Statistics window as shown in Figure 2-15. These statistics are only collected when the

Model for the SPE is set to pipeline.
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Figure 2-15. SPU Statistics

Figure 2-16 shows the LS_Stats window, which brings up the new local store display map. This dialog presents

accesses to the SPEs local storage in a graphical manner, where access types are color-coded as shown in the legend

and displayed for a range of addresses in the local store arranged across the x-axis of the plot. A trace of the accesses

shown in the plot is also displayed in text form in the list boxes on the lower part of the window.
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Figure 2-16. SPE Local Store Statistics Window

The last three items in an SPE folder represent actions to perform, with respect to the associated SPE. The first of these

action elements is labelled either Model: instruction, Model: pipeline, or Model: Fast. The label indicates whether the

simulation for this SPU is in instruction mode, for checking and debugging the functionality of a program, or pipeline

mode, for collecting performance statistics on the program, or fast mode for quickly advancing the execution of a

program to a region of interest. The mode can be toggled by double-clicking the item. The SPU Modes button in the

button array of the main GUI window can also be used as a more efficient way to set the modes of all of the SPEs

simultaneously.

The next item is labelled StackChecking:off or StackChecking:on. Double-clicking on this item will enable or disable

special checks for application stack overflow. This feature checks the “available space” element of the stack pointer

register (R1), as defined in the SPU Application Binary Interface specification, to detect stack overflow. The check is

performed on every write access to local storage and thus can significantly impact simulation performance.

The last item in the SPE folder, Load-Exec, is used for loading an executable onto an SPE to be executed in standalone

mode. When you double-click the item, a file-browsing window is displayed, allowing you to find and select the

executable file to load.

Simulator and BE Components

There are additional simulator- and BE-specific components that are available from these levels in the simulation

panel. These features include: 

At the BE level, the Load-Elf-App and Load-Elf-Kernel folders are available for loading an ELF binary or ELF kernel

for execution on the BE. Double-clicking these items opens a file-browsing window from which you can find

and select an application or kernel file to load.

At the simulator level, the MemoryMap and SystemMemory components display information about system

memory. The MemoryMap window displays the name of each region with the corresponding start and end

memory addresses for each region. The SystemMemory window displays a region of memory, specified using
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either a physical or effective address. Memory can be displayed as data in hex and ASCII strings or as PowerPC

instructions. SystemMemory also allows users to set breakpoints on read or write accesses to a region of

memory. Figure 2-17 and Figure 2-18 illustrate sample windows for MemoryMap and SystemMemory.

Figure 2-17. MemoryMap Window

Figure 2-18. SystemMemory Window

GUI Buttons

On the right side of the GUI screen (Figure 2-1 on page 8) are five rows of buttons. These are used to manipulate the

simulation process. The buttons do the following:

Advance Cycle—Advances the simulation by a set number of cycles. The default value is 1 cycle, but it can be

changed by entering an integer value in the textbox above the buttons, or by moving the slider next to the

textbox. The drop-down menu at the top of the GUI allows the user to select the time domain for cycle stepping.

The time units to use for cycles are expressed in terms of various system components. The simulation must be

stopped for this button to work; if the simulation is not stopped, the button is inactive.

Go—Starts or continues the simulation. In the SDK’s simulator, the first time the Go button is clicked it initiates the

Linux boot process. (In general, the action of the Go button is determined by the startup tcl file located in the

directory from which the simulator is started.)

Stop—Pauses the simulation.

Service GDB—Allows the external gdb debugger to attach to the running program. This button is also inactive

while the simulation is running.

Triggers/Breakpoints—Displays a window showing the current triggers and breakpoints.

Update GUI—Refreshes all of the GUI screens. By default, the GUI screens are updated automatically every four

seconds. Click this button to force an update.
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Debug Controls—Displays a window of the available debug controls and allows you to select which ones

should be active.

Options—Displays a window containing a Display tab from which you can set fonts for the GUI display, and a

Simulator tab from which you can set the gdb debugger port.

Emitters—Displays a window with the defined emitters, with separate tabs for writers and readers.

Mode—Displays a window containing a message indicating the current simulation mode and three buttons

which will change the simulation mode to fast, simple, or cycle mode. Figure 2-19 shows an example of this

dialog window. This dialog provides a convenient way to set the simulation mode for components of the system

in a consistent manner. The simulation mode can also be selected with the “mysim mode” command and

displayed with the “mysim display mode” command.

SPU Modes—Provides a convenient means to set each SPU's simulation mode to instruction mode, pipeline

(cycle accurate) mode or fast mode. The same capabilities are available using the Model toggle menu sub-item

under each SPE in the tree menu at the left of the main control panel. Figure 2-20 shows the SPU Modes

window.

SPE Visualization—Plots histograms of SPU and DMA event counts. The counts are sampled at user defined

intervals, and are continuously displayed. Two modes of display are provided: a “scroll” view, which tracks only

the most recent time segment, and a “compress” view, which accumulates samples to provide an overview of

the event counts during the time elapsed. Users can view collected data in either detail or summary panels. The

detailed, single-SPE panel tracks SPU pipeline phenomena (such as stalls, instructions executed by type, and issue

events), and DMA transaction counts by type (gets, puts, atomics, and so forth). The summary panel tracks all

eight SPEs for the Cell Broadband Engine, with each plot showing a subset of the detailed event count data

available. Figure 2-21 on page 20 shows the SPE Visualization window. 

Track All PCs—Provides a limited version of the PC tracker that shows the current execution location of all SPUs

and PPUs for each MCM in the system. If SMP mode is enabled, the Track All PCs window displays SPU and PPU

state for both MCMs. Figure 2-22 shows the Track All PCs window.

Event Log—Enables a set of pre-defines triggers to start collecting the log information. The window provides a

set of buttons that can be used to set the marker cycle to a point the the process. 

Exit—Exits the simulator and closes the GUI window.

Figure 2-19. Simulation Mode Window
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Figure 2-20. SPU Modes Windows

Figure 2-21. SPE Visualization Window
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Figure 2-22. Track All PCs Window
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CHAPTER 3

SystemSim Command Syntax and Usage
This chapter describes the IBM Full-System Simulator command framework, and introduces
the structure, format, and usage of simulator commands. Topics in this chapter include:

Understanding and Using Simulator Commands

Defining and Managing a Simulated Machine

Summary of Top-Level Simulator Commands
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Understanding and Using Simulator Commands 
The IBM Full-System Simulator provides a unified, cross-platform application programming interface that enables

users to easily set up the simulation environment, manage simulated architecture components, and write debugging

and performance analysis routines. The IBM Full-System Simulator has harnessed the power of Tcl/Tk to develop a

simple and programmable text-oriented syntax that is easily extended and minimizes the need for proprietary and

difficult programming grammar and usage. By extending Tcl with exported functions, data types, and numerous

predefined interfaces that are used for all interobject communication, the simulator provides a rapid, cross-platform

development environment that enables users to quickly start working in the simulation environment. 

The IBM Full-System Simulator command framework provides an extensive set of commands for modeling,

simulating, and tuning microprocessor components in a system. Each component in a microprocessor system is

configured via commands that not only define the component’s run-time behavior and characteristics, but govern its

relationships and interactions with surrounding components in the system. The SystemSim Command Reference

provides syntax and usage information for Tcl/Tk commands that are used in the simulator environment.

Commands in the IBM Full-System Simulator are organized into a hierarchy of operations based on the command

function. At the top level, commands perform general sets of operations in the simulation environment, such as

defining and displaying machine properties and system configurations, modifying configurable parameters,

performing 64-bit arithmetic operations that are not provided by default in Tcl, or managing the simulation

environment and its data collection and analysis tools. 

In addition to configuring system components, the simulator commands can be combined with programming logic

and Tcl programming constructs to gather, analyze, and visualize simulation events, run workloads on the modeled

microarchitecture, and generate performance metrics with new or revised configurations to forecast performance at

future workloads. The command line interface also can be used to perform a number of operations on the simulator

itself, such as to control a simulation, start data collection and visualization tools, and define and load virtual devices

and disk images. 
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Figure 3-1 illustrates how commands are processed in the simulation environment and describes the different

categories of commands that are available:

Figure 3-1. Categories of Simulator Commands

Once the simulator is started, commands may be entered at the simulator command line or via simulation Tcl scripts.

Figure 3-2 illustrates the simulator command line at start-up and the simulated Linux console that is launched from

the simulator command line with the mysim go command:

Figure 3-2. IBM Full-System Simulator Command Line

Command Line Input
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Component Configuration Commands: 
commands to display or modify configurations of a 
machine or configuration object in the simulation

Simulator tools
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Simulator Tools Commands: 
commands to set up and use the 
simulator’s data collection and 
analysis utilities

 Simulator Commands: commands to manage the simulation 
environment, or to define and modify simulator elements

sysrtemsim %

Interpreter reads command line input and confirms if command is 
pure Tcl or simulator Tcl syntax; the interpreter executes Tcl operations 
and passes simulator-specific commands to the simulation framework

Arithmetic 
utilities

64-bit Arithmetic Commands: commands to perform 
64-bit arithmetic (not supported by default in Tcl)

Simulated Machine

simulator command 
line prompt

Linux command line in
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Defining and Managing a Simulated Machine
Each version of the IBM Full-System Simulator delivers a set of default configurations for the type of PowerPC

processor it is modeling. Using these configurations, users can instantiate a simulated machine based on a default

configuration object to examine functionality and performance of a baseline system. Alternatively, users can create a

configuration object of the pre-defined machine, replace one or more default settings, and instantiate a custom

machine to evaluate how an individual component or the entire processor architecture performs under customized

conditions. 

Figure 3-3 describes the general sequence of commands that are used to define a machine in the simulation

environment:

Figure 3-3. Defining, Creating, and Starting a Simulated Machine

Commands to configure and initialize a simulated machine are typically provided to the simulator with a Tcl

configuration and start-up file called an initial run script that is loaded when the simulator starts. The initial run script

specifies commands to create a machine configuration and machine instance using this configuration, locate and

load the operating system and file system image files, and prepare the machine to begin execution. The name of the

initial run script can be passed to systemsim with the -f option. If there is no initial run script specified when the

simulator is started, the simulator will use either a user-defined initial run script, which by convention is named

.systemsim.tcl and resides in the current directory, or the default initial run script lib/cell/systemsim.tcl provided with

the systemsim-cell release. 

.

Simulator tools

IBM Full-System Simulator

Arithmetic 
utilities

Simulated Machine

1. Create a configuration object for a machine type: the define config command is used to define a new machine type for which an empty 
configuration template is created, or the define dup is used to duplicate an existing configuration based on pre-defined settings.

2. Modify configurable settings for the configuration object: the [configuration_name} config command is used to customize the default machine 
configuration by modifying mutable configuration properties.

3. Instantiate a machine based on the configuration object: the define machine [machine_name} command is used to create an instance of the 
machine type. At this point, most machine properties are fixed— although a subset of properties can be changed for the simulated machine (see Step 6 
below).

4. Load the Linux kernel and rootdisk image used by the simulated machine: the [machine_name] load and [machine_name} bogus commands 
are used to load disk images. Booting an operating system enables the execution of typical application programs that utilize standard operating system 
functionality. The Linux operating system (running in the simulated environment) loads the application and is responsible for all operating system calls.

5. Start the simulation: the [machine_name] go command launches the simulator console window, which displays output of the simulated machine 
and allows users to configure and interact with the simulation.

6. Reconfigure a modifiable machine parameter: the [machine_name] set command is used to change values of machine properties that can be 
modified. When the simulation is started, the revised value is used in the simulation.

Configuration object Modified parameters in 
configuration object

Instantiated machine

memory=256M

Disk images loaded in 
simulation environment

Simulated machine in simulation environment

cpi=2

cpi=1

Reconfigured parameter of a 
modifiable property
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A typical initial run script

The specific commands in an initial run script vary slightly for various machine configurations, but all follow the basic

procedure described above. The following describes a command sequence that may be found in a typical initial run

script.

1. Create a configuration object called myconf and initialize it with the configuration named cell. The cell 

configuration is a fixed configuration provided in the IBM Full-System Simulator as a baseline Cell BEA machine 

configuration:

define dup cell myconf

2. At this point, other configuration settings can be specified or changed. An example of a configuration change 

that can be made here is to specify that the configuration should employ two Cell Broadband Engine 

processors, referred to as an SMP or Dual BE configuration. Since this requires changes to a number of 

configuration parameters, a special procedure, config_dual_be, has been provided to specify an SMP 

configuration. This procedure takes as a parameter the name of the configuration to be modified, for example:

config_dual_be myconf

3. Create a simulator named mysim for a machine with the configuration myconf:

define machine myconf mysim.

4. Load the operating system kernel into memory:

mysim load vmlinux <path_to_vmlinux_file> 0x1000000

In hardware this would generally be performed by the system firmware, but the simulator is typically configured

without firmware installed and thus a simulator command is used to load the kernel into memory. In many

cases, the initial run script uses a standard search order to locate the vmlinux file, starting with the current

directory and then the images directory under the simulator root directory. The 0x1000000 parameter in this

command specifies the address at which to load the kernel file.

5. Specify a file containing the root filesystem (sysroot) image:

mysim bogus disk init 0 <path_to_sysroot_disk_file> newcow <cowfile> 1024

As with the kernel image, the initial run script typically uses a standard search order to locate the sysroot_disk file

starting with the current directory. The newcow parameter indicates that the disk image should be accessed

copy-on-write, with changes stored in <cowfile>. This method treats the contents of the sysroot_disk file

as read-only, so that subsequent simulations can be performed with repeatable results. Specifying an access type

of rw (for read-write) instead of newcow indicates that modifications to the root filesystem during the simulation

should be stored back into the sysroot_disk file. When the sysroot_disk is accessed read-write, the user

should issue the sync command before exiting the simulator to ensure consistency of the filesystem image.

6. Start the simulation with the mysim go command:

mysim go

This will start the boot of the Linux operating system.

7. Once the operating system has completed boot, you can execute applications that run on the PPE, SPU, or both, 

by entering commands at the Linux console. To automate console input, use the mysim console create 

command. This command automates the interactions that are typically performed by manually typing 

commands in the simulator console window:

mysim console create input in string <console_input>
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where console_input specifies a string containing console commands to execute. The string contents are

identical to any commands that are typed in the console window, including new lines (which can be entered

with the escape sequence \n). Typically, the last command of the console input is callthru exit to return control

to the simulation Tcl command script.

Summary of Top-Level Simulator Commands
Table 3-1 summarizes functionality of selected top-level commands that are used to define, modify, and use the

simulator. The IBM Full-System Simulator Command Reference provides the complete command line syntax and

usage of each command or class of commands. 

Table 3-1.  IBM Full-System Simulator Top-Level Commands

 Command Command Summary

alias Assigns a user-specified personal shorthand for a command string. The alias 
command allows users to call a small, more familiar command or name to execute 
long or complex command strings.

define Defines settings for a configuration object. The define command also provides 
that ability to duplicate configurations from a pre-defined machine type, 
instantiate a machine based on a configuration object, and enumerate a list of 
machines that are active in the simulation.

display Displays system-wide information about configurations, machines, instruction 
settings, and warning levels. The display command is especially useful to 
determine properties that are configured for machines that are currently available 
in a simulation.

ereader Controls emitter readers that are used in a simulation for performance data collec-
tion and measurement.

help or helprecursive Displays a listing the IBM Full-System Simulator commands. The helprecursive 
command displays a comprehensive command tree that hierarchically lists syntax 
and input parameters for all available commands.

modify Modifies configurable simulation settings or parameters. The modify command is 
useful for changing various run-time paramters, such as the warning level that is 
set for the simulation environment.

object Provides the ability to interrogate information from one or more executable files to 
examine low-level execution details.

quit Ends the current simulation and exits to the operating system command line.

simdebug Provides low-level tracing capabilities that are useful for debugging functionality or 
performance issues in the simulated system.

simemit Specifies event types to be written to the shared memory buffer that is recording 
emitted data.

simstop Stops the simulation and waits for instruction at the simulator command line. The 
simstop command performs the same operation as typing CTRL+C to interrupt the 
simulation.

version Displays the version number of simulation system components, the date and 
timestamp of the installed IBM Full-System Simulator build, and compile-time flags 
that are enabled in the build.
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At any time, users can type the help command at the command line to retrieve a list of command choices that are

available from that point in the syntax statement. In most cases, you can also just type a partial command sequence

and hit return. For example, at the top level, help displays a of top-level commands. An arrow indicates that a

subsequent level of command functionality is available for this command. 

64-bit arithmetic operations By default, arithmetic operations in the Tcl scripting language do not support 64-
bit arithmetic. The IBM Full-System Simulator provides the following operations to 
perform general calculations on 64-bit numbers:

add64 

and64

compare64

div64

format64

incr64

invert64

lessthan_u64

lshift64

mul64

or64

percent64

rshift64

sub64

uint32_to_float

Table 3-1.  IBM Full-System Simulator Top-Level Commands

 Command Command Summary
29SystemSim Command Syntax and Usage



30 Summary of Top-Level Simulator Commands © IBM Corporation. All rights reserved.



CHAPTER 4

Debugging Features in
SystemSim
The simulator has a vast array of debug facilities. This chapter describes some of the
debugging features that are specifically designed for SPU debugging. Topics in this chapter
include

Detecting SPU Stack Overflow

Bus errors caused by DMA errors

Kernel debugging
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Detecting SPU Stack Overflow
The SPU Local Store has no memory protection, and memory access wraps from the end of Local Store back to the

beginning. An SPU program is free to write anywhere in Local Store including its own instruction space. A common

problem in SPU programming is the corruption of the SPU program text or dynamically allocated data when the

program's stack area overflows into the heap or program area. This problem typically does not become apparent

until some later point in the program execution. If the overflow corrupted the program text, this typically results in an

illegal instruction exception when the program attempts to execute code in area that was corrupted. For corruption

of heap storage, the program might generate incorrect results or fail is some other manner. Even with a debugger it

can be difficult to track down this type of problem because the cause and effect can occur far apart in the program

execution. Adding printf's just moves the failure point around.

The simulator has a feature that checks for a stack overflow condition during the execution of an SPU program. This

feature checks the "available space" element of the stack pointer register (R1), as defined in the SPU Application Binary

Interface specification, for a negative value, which indicates stack overflow. The check is performed on every write

access to local storage and thus can significantly impact simulation performance.

Two methods are available to enable SPU stack checking. The first method is accessed through the SPE folder in the

tree view of the Graphical User Interface. Each SPE folder contains a StackChecking element that will toggle the status

of stack checking for that SPE. SPU stack checking can also be controlled using Tcl procedures provided with the

simulator. To enable stack checking for a specified SPU, use:

spu_stack_check::enable [spu_number]

Stack checking can be disabled with the Tcl statement

spu_stack_check::disable [spu_number]

When the simulator detects SPU stack overflow, it halts the simulation and displays a message indicating that

overflow has occurred. Figure 4-1 shows the simulator console window and command window from a simulator

run that employed enable_stack_checking to detect a stack overflow in a Cell/B.E. application. Note: Another

approach for detecting stack overflows is to use the stack checking options provided by the compiler. The -fstack-

check compile flag results in the insertion of runtime tests which will detect stack overflow by checking the amount of

stack space available whenever the stack pointer is modified. The program halts in the event of overflow.
32  © IBM Corporation. All rights reserved.



Figure 4-1. Example of SystemSim's stack overflow detection facility

Bus errors caused by DMA errors
The simulator also provides assistance with identifying the cause of bus errors that occur because of an error in

processing a DMA request issued by an SPU. Common errors encountered in DMA processing are alignment errors

and attempts to access unallocated or protected areas of system memory. The alignment rules for DMAs specify that

transfers for less than 16 bytes must be "naturally aligned," meaning that the address must be divisible by the size of

the transfer. Transfers of 16 bytes or more must be 16-byte aligned. The size can have a value of 1, 2, 4, 8, 16, or a
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multiple of 16 bytes to a maximum of 16KB. In addition, the low-order four bits of the Local Store address must match

the low-order four bits of effective address (in other words, they must have the same alignment within a quadword).

Any DMA that violates one of these rules will generate an alignment exception which is presented to the user as a

bus error. System memory addresses specified in DMA commands undergo address translation to ensure that the

storage area is allocated an accessible in the manner requested (read or write) by the DMA request. Errors in address

translation during DMA processing are also converted into bus errors.

The simulator checks the DMA alignment requirements and raises alignment exceptions as necessary to match the

behavior of the hardware. But in addition to this, the simulator also generates warning messages to aid the

programmer in finding and correcting these problems. Figure 4-2 illustrates a warning message, "WARNING:

441391050: GET command with illegal size (12) (< 16 and not 0, 1, 2, 4, or 8)," (highlighted in red in the figure)

issued by the simulator for a DMA alignment exception.

Figure 4-2. Warning message from simulator for DMA alignment exception

Kernel debugging
Debugging the Linux kernel can be a difficult task, in part because the kernel is a complex piece of software, but also

because the debugger cannot rely on basic OS functions being available or working properly. On the Cell BE SDK,

kernel debugging is simplified because the IBM Full-System Simulator, part of the Cell BE SDK, allows a debugger

running on the host system to debug a Linux kernel running inside the simulator.

To exploit this feature, you must have a version of GDB that supports the 64-bit PowerPC® architecture. On 64-bit

PowerPC host systems, this version of GDB might be available as part of the standard OS installation. Otherwise,

download and build a version of GDB with the appropriate architecture support. (Note: We currently recommend

using GDB version 6.3 to interface with the simulator. Later versions of GDB have introduced new interactions that

cause problems for simulator GDB stub.) The following commands illustrate the steps needed to configure, compile,

and install the correct version of GDB..

#
# Script to download and build gdb for ppc64.
#
mkdir -p base
mkdir -p obj
wget -c ftp://ftp.gnu.org/pub/gnu/gdb/gdb-6.3.tar.bz2 -P base
tar jxvf base/gdb-6.3.tar.bz2
pushd obj
../gdb-6.3/configure --target=powerpc64-linux
make all
make install
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popd

Simply cut and paste this into a file and execute it as a shell script, sh file. If the wget of the GDB source fails, download

it manually from one of the many mirror sites and comment out that line of the script. By default the install stage

installs into /usr/local/; for those who do not have write access to /usr/local, specify the --prefix option on configure

to specify a different installation directory (for example, configure --target=powerpc64- linux --prefix /home/sdkuser/

local).

Next you should build a version of the kernel that contains the debugging information. To do this, you need a

version of the Linux kernel source that contains support for the Cell BE platform. The easiest way to do this is to

download and install the kernel source RPM from the Linux on CBE-based Systems Web site at the Barcelona

Supercomputing Center (BSC; see Resources). The process for building the kernel depends on the host system,

installed tools, and other details, and is beyond the scope of this paper. This article only covers the necessary steps to

enable the debugging information. The example commands shown illustrate these steps on a Linux x86 platform

with Cell BE SDK 3.0 installed. To enable debugging information in the kernel, go to the directory where you will

build the kernel and type:

ARCH=powerpc PLATFORM=cell CROSS_COMPILE=/opt/cell/bin/ppu- make xconfig

The make xconfig command brings up the configuration menu shown in Figure 4-3. Scroll down and click on the

"Kernel hacking" in the left-hand set of options, then click on the "Compile the kernel with debug info" (DEBUG_INFO)

on the right-hand side set of options. This option specifies that symbols and source information are retained in the

generated binary to allow source-level debugging. In some cases, you might also choose to turn off certain compiler

optimizations to make debugging easier. In particular, disabling the - fomit-frame-pointer optimization allows the

debugger backtrack command to work reliably, and changing the optimization level from -Os to -O0 will make it

easier for GDB to associate individual instructions with a line in the source code. After making all the desired changes,

save the configuration, exit the configuration dialog, and then rebuild the kernel.

Figure 4-3. The make xconfig screen

Next, start the simulator with the newly built kernel. To ensure that the simulator is using the new kernel, create a

symbolic link named vmlinux to the new kernel in the current directory before starting the simulator. To verify that the

correct kernel is being used, check the name of the kernel file displayed by the simulator during start-up.

Now you are ready to start a debug session. First, start the simulator and click on the "Service GDB" button; notice that

the text of the button changes to "Waiting for GDB... ." In another window, change directories to the location where

you compiled vmlinux and start the GDB session with the command

/usr/local/bin/powerpc64-linux-gdbtui vmlinux
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then at the (gdb) prompt type

break start_kernel
target remote :2345
continue

You should see something very similar to Figure 4-4.

Figure 4-4. The kernel debug session

Now GDB is attached to the simulator and can monitor and control the execution of the Linux kernel. From here it is

possible to set additional breakpoints, display variables by name, display processor registers, display a stack trace,

single-step execution, and so on.
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CHAPTER 5

Accessing the Host
Environment
This chapter describes several mechanisms that are provided to allow interactions between
the host and simulated systems. Topics in this chapter include:

The Callthru Utility

Bogus Network Support
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The Callthru Utility
The callthru utility allows you to copy files between the host system and the simulated system while it is running. This

utility runs within the simulated system and accesses files in the host system using special callthru functions of the

simulator. The source code for this utility is provided with the simulator in the sample/callthru directory as a sample of

the use of the simulator callthru functions. In the Cell SDK, the callthru utility is installed as a binary application in the

simulator system root image in the /usr/bin directory. The callthru utility supports the following options:

To write standard input into <filename> on the host system, issue

callthru sink <filename>

To write the contents of <filename> on the host system to standard output, issue

callthru source <filename>

Redirecting appropriately lets you copy files between the host and simulated system. For example, to copy the /tmp/

matrix_mul application from the host into the simulated system and then run it, issue the following commands in the

console window of the simulated system:

callthru source /tmp/matrix_mul > matrix_mul
chmod +x matrix_mul
./matrix_mul

Another commonly used feature of the callthru utility is the exit option, which will stop the simulation, similar to the

stop button of the GUI, but initiated by the callthru utility inside the simulator rather than through user interaction.

This is especially useful for constructing “scripted” executions of the simulator that involve alternating steps in the

simulator and the simulated system.

To stop the simulator and return control back to currently active run script or the GUI / command line, issue

callthru sink <filename>

Bogus Network Support
Bogus network support was developed to enable network communications with reasonable performance between

the simulated system and other systems. This is accomplished using a special ethernet device that uses callthru

functions of the simulator to send and receive network packets to the host system. To enable communication with

other systems, the host system must be configured to relay packets from the simulated system out to the real network.

The bogus network facility can be configured and used in a variety of ways. A detailed description of the Linux and

SystemSim commands to set up and manage bogus network communications is provided below. For user

convenience, the most common approach to using the bogus network has been automated using Tcl procedures.

These will be described first since most users should find these sufficient for simple network communication between

the host and simulated system.

Bogusnet Tcl functions

To simplify the process of using the bogus network features of the simulator, two Tcl procedures are provided that

automate most of the steps required to set up the network interface and then clean up once the simulation has

finished. These procedures are:

% bogusnet::init <network>    ;# To initialize the network
% bogusnet::cleanup           ;# To free network resources

The <network> parameter specifies the IP network to be used by the bogusnet facility. Typically this will be a network

that has been reserved for use in private networks, such as 172.20.0. To use these Tcl procedures, simply issue the
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bogusnet::init before initiating the Linux boot process, and issue the bogusnet::cleanup just before exiting the

simulator.

Certain tasks for configuring the bogus network require root privileges. A special utility, snif (for Systemsim Network

InterFace) is provided with the simulator to perform these privileged configuration tasks. The snif utility is designed to

perform only those tasks required to access the bogus network support, and nothing else (details on the tasks

performed by snif are provided below). This means that non-root users simply need to be able to execute the snif

utility with root privileges to be able to use the bogus network support. 

There are a variety of mechanisms that can be used to provide these privileges. The default approach used in the SDK

is to install the snif utility as setuid root. This means that snif will run with root privileges when run by any user. If this

arrangement is considered undesirable, other approaches can used. The simulator includes an alternate version of

the bogusnet initialization procedure, bogusnet::sudo_init, that uses sudo as the means to provide snif with root

privileges. The following entries should be added to the sudoers file to give the non-root user sdkuser the

authorization to perform these tasks:

sdkuser     ALL=(ALL) NOPASSWD: /opt/ibm/systemsim-cell/bin/snif

Extended Description of Bogusnet support

There are three key components to Bogus net communications: 

1. A facility on the host system that provides SystemSim with a path to the network. The TUN/TAP support available 

for Linux is a good choice for this component, and we assume TUN/TAP in the remainder of this how-to. 

2. The systemsim support for bogus net. This support is not enabled by default. Simulator commands are used to 

enable the bogus net support. 

3. An OS kernel with a bogus network driver. Patches for several versions of linux are available. 

Setting up TUN/TAP on the host system 

To start, we want to make sure that TUN/TAP support is available on the host system. To do this, check your kernel

config file for CONFIG_TUN=m or CONFIG_TUN=y. 

% grep CONFIG_TUN= /boot/config-`uname -r`

TUN/TAP is configured in the stock kernels of many newer distributions, including Fedora Core 6. If your kernel does

not include TUN/TAP support, you will need to either install a new kernel or reconfigure/rebuild your kernel. 

Also you need to make sure /dev/net/tun exists. 

% ls -l /dev/net/tun

If /dev/net/tun does not exist, make it (as root) with: 

% mknod /dev/net/tun c 10 200

At this point, the TUN/TAP device should be ready for use by the simulator bogusnet support if the simulator is run by

the root user. However, to make Tun/Tap support available to non-root users, additional steps are required. These are

covered in the following section.

Setting up a TUN/TAP interface for a non-root user

The procedure for making TUN/TAP available to non-root users depends on the version of Linux kernel being used

on the system. Prior to Linux 2.6.18, a simple though perhaps not very secure means of doing this is to allow all users

read and write access to the /dev/net/tun device. This can be accomplished with a simple chmod command (as

root):
39Accessing the Host Environment



% chmod 666 /dev/net/tun

More secure approaches, such as restricting access by groupid, are also possible. Note: Many newer Linux

distributions include support for udev, which is designed to dynamically manage device nodes along with their

permissions and other attributes. For these systems, udev may be used to create /dev/net/tun with the desired

permissions. For example, in Fedora Core 6 systems, this can be accomplished by creating a file (like systemsim.rules)

in the directory /etc/udev/rules.d/ containing:

KERNEL=="tun", MODE="0666"

Note: Some distributions that include udev support explicitly disable udev support for /dev/net/tun. In particular,

udev support for /dev/net/tun is disabled in Fedora Core 4 and Fedora Core 5.

For systems using 2.6.18 and later versions of Linux, the kernel imposes a further restriction on access to the TUN/TAP

facility, effectively preventing non-root users from creating new TUN/TAP interfaces. For these systems, non-root users

can only access existing TUN/TAP interfaces which were previously created by root and are designated as owned by

that user. Unfortunately, there are no standard utilities for creating / assigning TUN/TAP interfaces, so the snif (for

Systemsim Network InterFace) utility has been developed and provided with simulator for this purpose.

The snif utility is available in the simulator bin directory. To create a new TUN/TAP interface with IP address 172.20.0.1

for use by a user with uid 5555, issue the following command:

% snif -c -u 5555 172.20.0.1

To create a new TUN/TAP interface, snif opens the /dev/net/tun device file and issues a sequence of ioctl commands

to set the name of the interface (to “tapn” where n is chosen as the first available tap interface name), set the owner

of the interface to the specified uid, and make the interface persistent. snif then uses the ifconfig command to set the

IP address for the interface. If these operations are successful, snif will display the name of the interface (typically

"tap0") that was created. This interface name must be specified on the simulator command to initialize the simulator

bogus net support.

snif will establish a private network on the host system to which the bogus network device on the simulated system

can attach after it is booted. We use the IP address 172.20.0.1 since it belongs to one of the special ranges of

addresses that have been reserved for use in private networks (see [Wikipedia: classful network]). 

The TUN/TAP interface created by snif is persistent, meaning that it remains allocated until explicitly deleted (or until

the host system is restarted). Therefore, it is important to release this interface when it is no longer required (such as at

the end of the simulator session). To free a TUN/TAP interface previously allocated by snif, issue the following

command:

% snif -d <interface name>

where the <interface name> parameter is the name of the interface to be freed, typically "tap0".

Configuring SystemSim support for Bogus Net 

To enable bogus net support, you need to issue simulator commands that configure and initialize the bogus

network. These commands must be issued before booting the Linux kernel on the simulator so that Linux recognizes

the bogus network device during its boot process. The general form of the command to initialize bogus net is 

mysim bogus net init 0 <mac address> <interface name> <irq>

The <mac address> parameter is the MAC Hardware Address you want the emulated ethernet to use. It should be

unique on your network (i.e. not used by any other emulated hosts, or by any host network adapter).   The <interface

name> parameter is the name of the interface to be used, typically "tap0". The <irq> parameter specifies the interrupt

request queue id to be used by bogus network device. Some simulated machines, such as Cell, do not include a
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model for the external interrupt controller, and for these machines the bogus network device must be operated in

polled mode, which is specified by a value of 0 for the <irq> parameter. The GPU/L simulator does include an external

interrupt controller model, and for GPU/L the <irq> parameter should be set to 9.

The bogus net device driver 

The final component required for bogus network communication is an OS kernel with the bogus net device driver.

This driver can be either built into the kernel or packaged as a loadable module. Currently, the bogus net device

driver is not included in the mainline kernel and must be added as a patch on top of the kernel. Patches for several

versions of Linux are available. Depending on where you obtained the kernel you use on SystemSim, this step may

have already be done for you. 

Connecting to the simulation host 

Once these components are in place, you are ready to use bogus net for network communications with the

simulated system. Start the simulation and when you reach the linux prompt enter the following commands on the

simulated console (UART): 

% mount /proc
% ifconfig eth0 172.20.0.2 netmask 255.255.255.0

You should then be able to ping the host system from the simulated system (and vice-versa) 

% ping -c 1 172.20.0.1

Troubleshooting BogusNet

ping of system host from simulated host results in ping icmp open socket: Operation not permitted: 

This was seen in the Cell kernel. First thing, check and see if you can ping the simulated host from the

system host. If this is working, you know that the bogus network traffic is flowing in both directions

and the problem is most likely with your kernel or root disk -- most likely the latter. 

operations seems to hang :

Beware of firewalls/ipchains/iptables -- most like you have a firewall of some sort blocking the port.

Either disable your firewall or open up the specific port. 
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